File size: 3,419 Bytes
480d8d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
library_name: peft
tags:
- unsloth
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.3
model-index:
- name: mistral_7b_v_Magiccoder_evol_10k_reverse
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_7b_v_Magiccoder_evol_10k_reverse
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1146
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.02
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1799 | 0.0262 | 4 | 1.1888 |
| 1.1193 | 0.0523 | 8 | 1.1757 |
| 1.1603 | 0.0785 | 12 | 1.1751 |
| 1.0847 | 0.1047 | 16 | 1.1702 |
| 1.1304 | 0.1308 | 20 | 1.1674 |
| 1.042 | 0.1570 | 24 | 1.1582 |
| 1.1863 | 0.1832 | 28 | 1.1633 |
| 1.14 | 0.2093 | 32 | 1.1597 |
| 1.0763 | 0.2355 | 36 | 1.1503 |
| 1.135 | 0.2617 | 40 | 1.1458 |
| 1.1623 | 0.2878 | 44 | 1.1393 |
| 1.1173 | 0.3140 | 48 | 1.1423 |
| 1.1283 | 0.3401 | 52 | 1.1482 |
| 1.0967 | 0.3663 | 56 | 1.1356 |
| 1.1131 | 0.3925 | 60 | 1.1338 |
| 1.1613 | 0.4186 | 64 | 1.1419 |
| 1.0548 | 0.4448 | 68 | 1.1454 |
| 1.0629 | 0.4710 | 72 | 1.1320 |
| 1.0679 | 0.4971 | 76 | 1.1355 |
| 1.16 | 0.5233 | 80 | 1.1287 |
| 1.0579 | 0.5495 | 84 | 1.1295 |
| 1.1214 | 0.5756 | 88 | 1.1392 |
| 1.1681 | 0.6018 | 92 | 1.1242 |
| 1.1667 | 0.6280 | 96 | 1.1223 |
| 1.0871 | 0.6541 | 100 | 1.1221 |
| 1.1147 | 0.6803 | 104 | 1.1243 |
| 1.1075 | 0.7065 | 108 | 1.1254 |
| 0.9958 | 0.7326 | 112 | 1.1186 |
| 1.0718 | 0.7588 | 116 | 1.1085 |
| 1.0748 | 0.7850 | 120 | 1.1193 |
| 1.1082 | 0.8111 | 124 | 1.1138 |
| 1.0981 | 0.8373 | 128 | 1.1102 |
| 1.1231 | 0.8635 | 132 | 1.1133 |
| 1.0687 | 0.8896 | 136 | 1.1143 |
| 1.1568 | 0.9158 | 140 | 1.1139 |
| 1.0177 | 0.9419 | 144 | 1.1140 |
| 1.0401 | 0.9681 | 148 | 1.1145 |
| 1.1827 | 0.9943 | 152 | 1.1146 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |