File size: 3,423 Bytes
145ada9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
library_name: peft
tags:
- unsloth
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.3
model-index:
- name: mistral_7b_v_Magiccoder_evol_10k_ortho_eye
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_7b_v_Magiccoder_evol_10k_ortho_eye

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1247

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1455        | 0.0262 | 4    | 1.1541          |
| 1.0929        | 0.0523 | 8    | 1.1577          |
| 1.1547        | 0.0785 | 12   | 1.1582          |
| 1.0799        | 0.1047 | 16   | 1.1610          |
| 1.1245        | 0.1308 | 20   | 1.1570          |
| 1.0424        | 0.1570 | 24   | 1.1550          |
| 1.2024        | 0.1832 | 28   | 1.1680          |
| 1.1394        | 0.2093 | 32   | 1.1582          |
| 1.0763        | 0.2355 | 36   | 1.1444          |
| 1.1647        | 0.2617 | 40   | 1.1582          |
| 1.1595        | 0.2878 | 44   | 1.1405          |
| 1.1174        | 0.3140 | 48   | 1.1544          |
| 1.1309        | 0.3401 | 52   | 1.1516          |
| 1.0992        | 0.3663 | 56   | 1.1445          |
| 1.1153        | 0.3925 | 60   | 1.1478          |
| 1.1492        | 0.4186 | 64   | 1.1270          |
| 1.0597        | 0.4448 | 68   | 1.1516          |
| 1.0823        | 0.4710 | 72   | 1.1316          |
| 1.0553        | 0.4971 | 76   | 1.1295          |
| 1.1869        | 0.5233 | 80   | 1.1536          |
| 1.0678        | 0.5495 | 84   | 1.1374          |
| 1.1336        | 0.5756 | 88   | 1.1411          |
| 1.1852        | 0.6018 | 92   | 1.1312          |
| 1.1769        | 0.6280 | 96   | 1.1368          |
| 1.1038        | 0.6541 | 100  | 1.1318          |
| 1.1325        | 0.6803 | 104  | 1.1391          |
| 1.1244        | 0.7065 | 108  | 1.1349          |
| 1.003         | 0.7326 | 112  | 1.1286          |
| 1.078         | 0.7588 | 116  | 1.1177          |
| 1.085         | 0.7850 | 120  | 1.1303          |
| 1.132         | 0.8111 | 124  | 1.1334          |
| 1.1244        | 0.8373 | 128  | 1.1261          |
| 1.1359        | 0.8635 | 132  | 1.1215          |
| 1.0771        | 0.8896 | 136  | 1.1210          |
| 1.1682        | 0.9158 | 140  | 1.1222          |
| 1.0336        | 0.9419 | 144  | 1.1236          |
| 1.0538        | 0.9681 | 148  | 1.1245          |
| 1.1999        | 0.9943 | 152  | 1.1247          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1