soksof commited on
Commit
5663382
·
verified ·
1 Parent(s): f4f6fd1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -3
README.md CHANGED
@@ -5,7 +5,7 @@ license: llama3.1
5
  # Llama-Krikri-8B: A large foundation Language Model for the Greek language
6
 
7
  Following the release of [Meltemi-7B](https://huggingface.co/ilsp/Meltemi-7B-v1) on the 26th March 2024 we are happy to welcome Krikri to the family of ILSP open Greek LLMs.
8
- Krikri is built on top of [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B), extending its capabilities for Greek through continual pretraining on a large corpus of high-quality and locally relevant Greek texts. We present Llama-Krikri-8B-Base, as well as an instruct version [Llama-Krikri-8b-Instruct](https://huggingface.co/ilsp/Llama-Krikri-8B-instruct).
9
 
10
  ![image/png](llama-krikri-image.jpg)
11
 
@@ -31,9 +31,24 @@ Krikri is built on top of [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama
31
  Chosen subsets of the 89.65 billion corpus were upsampled resulting in a size of 110 billion tokens.
32
 
33
 
34
- # Usage
35
 
36
- Please make sure that the BOS token is always included in the tokenized prompts. This might not be the default setting in all evaluation or fine-tuning frameworks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
  # Evaluation
 
5
  # Llama-Krikri-8B: A large foundation Language Model for the Greek language
6
 
7
  Following the release of [Meltemi-7B](https://huggingface.co/ilsp/Meltemi-7B-v1) on the 26th March 2024 we are happy to welcome Krikri to the family of ILSP open Greek LLMs.
8
+ Krikri is built on top of [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B), extending its capabilities for Greek through continual pretraining on a large corpus of high-quality and locally relevant Greek texts. We present Llama-Krikri-8B-Base, as well as an instruct version [Llama-Krikri-8B-Instruct](https://huggingface.co/ilsp/Llama-Krikri-8B-instruct).
9
 
10
  ![image/png](llama-krikri-image.jpg)
11
 
 
31
  Chosen subsets of the 89.65 billion corpus were upsampled resulting in a size of 110 billion tokens.
32
 
33
 
34
+ # How to use
35
 
36
+
37
+ ```python
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ device = "cuda"
41
+
42
+ model = AutoModelForCausalLM.from_pretrained("ilsp/Llama-Krikri-8B-Base")
43
+ tokenizer = AutoTokenizer.from_pretrained("ilsp/Llama-Krikri-8B-Base")
44
+
45
+ model.to(device)
46
+
47
+ input_text = tokenizer("Ποιες είναι οι διαφορές ανάμεσα σε ένα λάμα και ένα κρικρί", return_tensors='pt').to(device)
48
+ outputs = model.generate(input_text['input_ids'], max_new_tokens=256, do_sample=True)
49
+
50
+ print(tokenizer.batch_decode(outputs)[0])
51
+ ```
52
 
53
 
54
  # Evaluation