File size: 2,022 Bytes
9097c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-ap7_1_ip
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-ap7_1_ip

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0246
- Precision: 0.7719
- Recall: 0.8302
- F1: 0.8
- Accuracy: 0.9961

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5176        | 14.7059 | 250  | 0.0664          | 0.45      | 0.1698 | 0.2466 | 0.9881   |
| 0.0288        | 29.4118 | 500  | 0.0354          | 0.6538    | 0.6415 | 0.6476 | 0.9930   |
| 0.0143        | 44.1176 | 750  | 0.0269          | 0.7333    | 0.8302 | 0.7788 | 0.9956   |
| 0.0098        | 58.8235 | 1000 | 0.0246          | 0.7719    | 0.8302 | 0.8    | 0.9961   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1