import torch import torch.nn as nn from torch.nn import functional as F from torchvision import models from transformers import PreTrainedModel, PretrainedConfig from transformers.modeling_outputs import CausalLMOutput from .configuration_bytegpt import ByteGPTConfig try: from flash_attn.flash_attention import FlashAttention FLASH_ATTENTION_AVAILABLE = ( True and torch.cuda.is_available() ) # Only available on CUDA except ImportError: FLASH_ATTENTION_AVAILABLE = False class Head(nn.Module): """One head of self-attention. Args: head_size (int): The size of the head. n_embd (int): The embedding dimension. block_size (int): The block size. dropout (float): The dropout rate. use_flash_attention (bool): Whether to use Flash Attention. Attributes: key (nn.Linear): The linear layer for computing the keys. query (nn.Linear): The linear layer for computing the queries. value (nn.Linear): The linear layer for computing the values. tril (torch.Tensor): The lower triangular matrix. dropout (nn.Dropout): The dropout layer. use_flash_attention (bool): Whether to use Flash Attention. flash_attention (FlashAttention): The FlashAttention module. """ def __init__( self, head_size: int, n_embd: int, block_size: int, dropout: float, use_flash_attention: bool = False, ) -> None: super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.dropout = nn.Dropout(dropout) # Only enable flash attention if we're on CUDA self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE if self.use_flash_attention: print("Using Flash Attention") self.flash_attention = FlashAttention() else: if use_flash_attention: print( "Flash Attention requested but not available. Using standard attention." ) self.tril = torch.tril(torch.ones(block_size, block_size)) def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform forward pass through the attention head. Args: x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). Returns: torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). """ B, T, C = x.shape k = self.key(x) # (B,T,head_size) q = self.query(x) # (B,T,head_size) v = self.value(x) # (B,T,head_size) if self.use_flash_attention: # Flash Attention expects shape (B, H, T, D) out = self.flash_attention(q.unsqueeze(1), k.unsqueeze(1), v.unsqueeze(1))[ 0 ].squeeze(1) else: # Regular attention self.tril = self.tril.to(x.device) wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5 # (B, T, T) wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B, T, T) wei = F.softmax(wei, dim=-1) # (B, T, T) wei = self.dropout(wei) out = wei @ v # (B, T, head_size) return out class MultiHeadAttention(nn.Module): """Multiple heads of self-attention in parallel. Args: num_heads (int): The number of heads. head_size (int): The size of each head. n_embd (int): The embedding dimension. block_size (int): The block size. dropout (float): The dropout rate. use_flash_attention (bool): Whether to use Flash Attention. Attributes: heads (nn.Modulelist): The list of attention heads. proj (nn.Linear): The linear layer for projecting the concatenated heads. dropout (nn.Dropout): The dropout layer. """ def __init__( self, num_heads: int, head_size: int, n_embd: int, block_size: int, dropout: float, use_flash_attention: bool = False, ) -> None: super().__init__() self.heads = nn.ModuleList( [ Head( head_size, n_embd, block_size, dropout, use_flash_attention=use_flash_attention, ) for _ in range(num_heads) ] ) self.proj = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform forward pass through the multi-head attention layer. Args: x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). Returns: torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). """ out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): """Simple linear layer followed by a non-linearity. Args: n_embd (int): The embedding dimension. dropout (float): The dropout rate. Attributes: net (nn.Sequential): The sequential network of linear layers and ReLU activation. """ def __init__(self, n_embd: int, dropout: float) -> None: super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform forward pass through the feedforward layer. Args: x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). Returns: torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). """ return self.net(x) class Block(nn.Module): """Transformer block: communication followed by computation. Args: n_embd (int): The embedding dimension. n_head (int): The number of attention heads. block_size (int): The block size. dropout (float): The dropout rate. use_flash_attention (bool): Whether to use Flash Attention. Attributes: sa (MultiHeadAttention): The multi-head attention layer. ffwd (FeedForward): The feedforward layer. ln1 (nn.LayerNorm): The layer normalization layer for the first sublayer. ln2 (nn.LayerNorm): The layer normalization layer for the second sublayer. """ def __init__( self, n_embd: int, n_head: int, block_size: int, dropout: float, use_flash_attention: bool = False, ) -> None: super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention( n_head, head_size, n_embd, block_size, dropout, use_flash_attention=use_flash_attention, ) self.ffwd = FeedForward(n_embd, dropout) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) # Remove duplicate flash attention and tril setup since it's handled in Head class self.use_flash_attention = use_flash_attention and FLASH_ATTENTION_AVAILABLE if self.use_flash_attention: print("Using Flash Attention") elif use_flash_attention: print( "Flash Attention requested but not available. Using standard attention." ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform forward pass through the transformer block. Args: x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embedding_dimension). Returns: torch.Tensor: The output tensor of shape (batch_size, sequence_length, embedding_dimension). """ x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x class ByteGPTForCausalLM(PreTrainedModel): config_class = ByteGPTConfig def __init__( self, config: ByteGPTConfig, ): super().__init__(config) self.block_size = config.block_size self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd) self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd) self.blocks = nn.Sequential( *[ Block( config.n_embd, config.n_head, config.block_size, config.dropout, config.use_flash_attention, ) for _ in range(config.n_layer) ] ) self.ln_f = nn.LayerNorm(config.n_embd) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, return_dict: bool = True, labels: torch.Tensor = None, **kwargs ) -> tuple[torch.Tensor, torch.Tensor]: """ Forward pass of the model. Args: idx: Input tensor. targets: Target tensor. Returns: tuple of logits and loss. """ B, T = input_ids.shape # Token and position embeddings tok_emb = self.token_embedding_table(input_ids) # (B,T,C) pos_emb = self.position_embedding_table( torch.arange(T, device=input_ids.device) ) # (T,C) x = tok_emb + pos_emb # (B,T,C) # Transformer blocks x = self.blocks(x) # (B,T,C) x = self.ln_f(x) # (B,T,C) # Language model head logits = self.lm_head(x) # (B,T,vocab_size) if labels is None: loss = None else: B, T, C = logits.shape logits = logits.view(B * T, C) labels = labels.view(B * T) loss = F.cross_entropy(logits, labels) if not return_dict: return (logits, loss) return CausalLMOutput(logits=logits, loss=loss) def prepare_inputs_for_generation(self, input_ids, **kwargs): # Required for .generate() to work return { "input_ids": input_ids, "attention_mask": torch.ones_like(input_ids), } # def generate( # self, input_ids: torch.Tensor, max_new_tokens: int, temperature: float = 1.0 # ) -> torch.Tensor: # """ # Generate text tokens autoregressively. # Args: # idx: Context tokens # max_new_tokens: Number of tokens to generate # temperature: Sampling temperature (higher = more random) # Returns: # Generated token sequence # """ # for _ in range(max_new_tokens): # # Crop context if needed # idx_cond = input_ids[:, -self.block_size :] # # Get predictions # logits, _ = self(idx_cond) # # Focus only on the last time step # logits = logits[:, -1, :] / temperature # # Apply softmax to get probabilities # probs = F.softmax(logits, dim=-1) # # Sample from the distribution # idx_next = torch.multinomial(probs, num_samples=1) # # Append sampled index to the running sequence # idx = torch.cat((idx, idx_next), dim=1) # return idx