ijktech-jk commited on
Commit
d5a1ab0
·
verified ·
1 Parent(s): 3996fcb

Update with README

Browse files
Files changed (1) hide show
  1. README.md +115 -167
README.md CHANGED
@@ -1,199 +1,147 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - gpt
5
+ - distillation
6
+ - mobile
7
+ - embedded
8
+ - onnx
9
+ license: cc-by-nc-4.0
10
+ datasets:
11
+ - custom
12
+ - web
13
+ language: en
14
+ widget:
15
+ - text: "In order to make pancakes, you need to"
16
+ - text: "Once upon a time"
17
  ---
18
 
19
+ <p align="center">
20
+ <img src="logo.png" alt="IJK Technology" width="150">
21
+ </p>
22
+
23
+ <h1 align="center">IJK Technology – ByteGPT-r1</h1>
24
+
25
+
26
+ **ByteGPT-r1** is a distilled version of DeepSeek's QWEN 1.5B model, optimized specifically for mobile and edge computing environments. It maintains impressive language capabilities while being designed for compute- and memory-constrained devices.
27
+
28
+ ## 🚀 Overview
29
+ - **Model Type:** Distilled GPT-style causal language model
30
+ - **Base Model:** DeepSeek's QWEN 1.5B
31
+ - **Intended Use:** Edge devices, mobile phones, embedded systems
32
+ - **Size:** Optimized for mobile deployment
33
+ - **Training:** Knowledge distillation from QWEN 1.5B
34
+
35
+ ## 🧠 Why ByteGPT-r1?
36
+ ByteGPT-r1 offers several advantages for mobile and edge deployment:
37
 
38
+ 1. **Efficient Knowledge Distillation:**
39
+ Carefully distilled from DeepSeek's QWEN 1.5B model to preserve capabilities while reducing computational requirements.
40
 
41
+ 2. **Mobile-First Design:**
42
+ Architected specifically for the constraints of mobile devices, with optimizations for both inference speed and memory usage.
43
 
44
+ 3. **Balanced Performance:**
45
+ Maintains a good balance between model size and language generation capabilities, making it practical for real-world mobile applications.
46
 
47
+ ## 💡 Future Plans
48
+ This model is part of our ongoing effort to bring powerful language models to edge devices. Upcoming releases will include:
49
 
50
+ - **Specialized Variants:** Domain-specific versions optimized for particular use cases
51
+ - **Further Optimizations:** Continued improvements in efficiency and performance
52
+ - **Benchmark Results:** Comparative performance on various mobile devices
53
+ - **Integration Examples:** More code samples for popular mobile frameworks
54
 
55
+ ## 💻 Usage
56
 
57
+ ### **Quick Start (with `transformers`):**
58
+ ```python
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
60
 
61
+ model = AutoModelForCausalLM.from_pretrained("ijktech/ByteGPT-r1", trust_remote_code=True)
62
+ tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-r1")
 
 
 
 
 
63
 
64
+ input_text = "What is the capital of France?"
65
+ inputs = tokenizer(input_text, return_tensors="pt")
66
+ outputs = model.generate(**inputs, max_new_tokens=100)
67
 
68
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
69
+ ```
70
 
71
+ ### Tokenizer
 
 
72
 
73
+ The tokenizer is compatible with AutoTokenizer from Hugging Face:
74
 
75
+ ```python
76
+ tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-r1")
77
+ ```
78
 
79
+ ### ONNX
80
 
81
+ The model is also available in ONNX format, and can be used with the ONNX Runtime:
82
 
83
+ ```python
84
+ import onnxruntime as ort
85
+ import numpy as np
86
 
87
+ # Create ONNX Runtime session
88
+ ort_session = ort.InferenceSession("model.onnx")
89
 
90
+ # Helper function to generate text using the ONNX model
91
+ def generate_with_onnx(prompt_ids, max_new_tokens=50, temperature=1.0):
92
+ input_ids = prompt_ids.clone()
93
+
94
+ for _ in range(max_new_tokens):
95
+ # Get the last block_size tokens if input is too long
96
+ if input_ids.shape[1] > model.block_size:
97
+ input_ids = input_ids[:, -model.block_size:]
98
+
99
+ # Run inference
100
+ ort_inputs = {
101
+ 'input': input_ids.cpu().numpy()
102
+ }
103
+ logits = ort_session.run(None, ort_inputs)[0]
104
+
105
+ # Get predictions for the next token
106
+ logits = torch.from_numpy(logits)
107
+ logits = logits[:, -1, :] # Only take the last token's predictions
108
+
109
+ # Apply temperature
110
+ if temperature != 1.0:
111
+ logits = logits / temperature
112
+
113
+ # Sample from the distribution
114
+ probs = torch.nn.functional.softmax(logits, dim=-1)
115
+ next_token = torch.multinomial(probs, num_samples=1)
116
+
117
+ # Append the new token
118
+ input_ids = torch.cat([input_ids, next_token], dim=1)
119
+
120
+ return input_ids
121
 
122
+ # Test the generation
123
+ prompt = "Hello"
124
+ prompt_ids = tok(prompt, return_tensors="pt")["input_ids"]
125
+ generated_ids = generate_with_onnx(prompt_ids)
126
+ generated_text = tok.decode(generated_ids[0], skip_special_tokens=True)
127
+ print(f"Generated text: {generated_text}")
128
+ #Generated text: Hello there! How can I assist you today? I'm a helpful AI assistant trained to provide information and answer questions on a wide range of topics.
129
+ ```
130
 
131
+ ### Android Usage
132
 
133
+ Coming Soon!
134
 
 
135
 
136
+ ### iOS Usage
137
 
138
+ Coming Soon!
139
 
 
140
 
141
+ ## 📜 License
142
+ 📍 **CC-BY-NC-4.0**: Free for non-commercial use.
143
 
144
+ 💼 **Commercial Use**: Contact IJK Technology Ltd for licensing at [james@ijktech.com](mailto:[email protected]).
145
 
146
+ ## 🛠️ About IJK Technology Ltd
147
+ IJK Technology Ltd (IJKTech) develops innovative machine learning models optimized for on-device inference. Our focus is on efficiency, privacy, and usability across mobile and embedded platforms.