# wav2vec2-large-xlsr-galician --- language: gl datasets: - OpenSLR 77 - mozilla-foundation common_voice_8_0 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Galician wav2vec2-large-xlsr-galician results: - task: name: Speech Recognition type: automatic-speech-recognition dataset_1: name: OpenSLR type: openslr args: gl dataset_2: name: mozilla-foundation type: common voice args: gl metrics: - name: Test WER type: wer value: 7.12 --- # Model Fine-tuned model for Galician language Based on the [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) self-supervised model Fine-tune with audio labelled from [OpenSLR](https://openslr.org/77/) and Mozilla [Common_Voice](https://commonvoice.mozilla.org/gl) (both datasets previously refined) Check training metrics to see results # Testing Make sure that the audio speech input is sampled at 16kHz (mono). ```python from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model = Wav2Vec2ForCTC.from_pretrained("ifrz/wav2vec2-large-xlsr-galician") processor = Wav2Vec2Processor.from_pretrained("ifrz/wav2vec2-large-xlsr-galician") # Reading taken audio clip import librosa, torch audio, rate = librosa.load("./gl_test_1.wav", sr = 16000) # Taking an input value input_values = processor(audio, sampling_rate=16_000, return_tensors = "pt", padding="longest").input_values # Storing logits (non-normalized prediction values) logits = model(input_values).logits # Storing predicted ids prediction = torch.argmax(logits, dim = -1) # Passing the prediction to the tokenzer decode to get the transcription transcription = processor.batch_decode(prediction)[0] print(transcription) ```