File size: 43,028 Bytes
782d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# -*- coding:utf-8 -*-
# Rhizome
# Version beta 0.0, August 2023
# Property of IBM Research, Accelerated Discovery
#

"""
PLEASE NOTE THIS IMPLEMENTATION INCLUDES ADAPTED SOURCE CODE
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE, 
E.G., GRUEncoder/GRUDecoder, GrammarSeq2SeqVAE AND EVEN SOME METHODS OF GrammarGINVAE.
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE. 
"""

import numpy as np
import logging

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss

from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_add_pool


from ..graph_grammar.graph_grammar.symbols import NTSymbol
from ..graph_grammar.nn.encoder import EncoderBase
from ..graph_grammar.nn.decoder import DecoderBase

def get_atom_edge_feature_dims():
    from torch_geometric.utils.smiles import x_map, e_map
    func = lambda x: len(x[1])
    return list(map(func, x_map.items())), list(map(func, e_map.items()))


class FeatureEmbedding(nn.Module):
    def __init__(self, input_dims, embedded_dim):
        super().__init__()
        self.embedding_list = nn.ModuleList()
        for dim in input_dims:
            embedding = nn.Embedding(dim, embedded_dim)
            self.embedding_list.append(embedding)
    
    def forward(self, x):
        output = 0
        for i in range(x.shape[1]):
            input = x[:, i].to(torch.int)
            device = next(self.parameters()).device
            if device != input.device:
                input = input.to(device)
            emb = self.embedding_list[i](input)
            output += emb
        return output
    

class GRUEncoder(EncoderBase):

    def __init__(self, input_dim: int, hidden_dim: int, num_layers: int,
                 bidirectional: bool, dropout: float, batch_size: int, rank: int=-1,
                 no_dropout: bool=False):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.dropout = dropout
        self.batch_size = batch_size
        self.rank = rank
        self.model = nn.GRU(input_size=self.input_dim,
                            hidden_size=self.hidden_dim,
                            num_layers=self.num_layers,
                            batch_first=True,
                            bidirectional=self.bidirectional,
                            dropout=self.dropout if not no_dropout else 0)
        if self.rank >= 0:
            if torch.cuda.is_available():
                self.model = self.model.to(rank)
            else:
                # support mac mps
                self.model = self.model.to(torch.device("mps", rank))
        self.init_hidden(self.batch_size)
        
    def init_hidden(self, bsize):
        self.h0 = torch.zeros(((self.bidirectional + 1) * self.num_layers,
                               min(self.batch_size, bsize),
                               self.hidden_dim),
                              requires_grad=False)
        if self.rank >= 0:        
            if torch.cuda.is_available():
                self.h0 = self.h0.to(self.rank)
            else:
                # support mac mps
                self.h0 = self.h0.to(torch.device("mps", self.rank))

    def to(self, device):
        newself = super().to(device)
        newself.model = newself.model.to(device)
        newself.h0 = newself.h0.to(device)
        newself.rank = next(newself.parameters()).get_device()
        return newself

    def forward(self, in_seq_emb):
        ''' forward model

        Parameters
        ----------
        in_seq_emb : Tensor, shape (batch_size, max_len, input_dim)

        Returns
        -------
        hidden_seq_emb : Tensor, shape (batch_size, max_len, 1 + bidirectional, hidden_dim)
        '''
        # Kishi: I think original MHG had this init_hidden()
        self.init_hidden(in_seq_emb.size(0))
        max_len = in_seq_emb.size(1)
        hidden_seq_emb, self.h0 = self.model(
            in_seq_emb, self.h0)
        # As shown as returns, convert hidden_seq_emb: (batch_size, seq_len, (1 or 2) * hidden_size) -->
        # (batch_size, seq_len, 1 or 2, hidden_size)
        # In the original input the original GRU/LSTM with bidirectional encoding 
        # has contactinated tensors 
        # (first half for forward RNN, latter half for backward RNN)
        # so convert them in a more friendly format packed for each RNN
        hidden_seq_emb = hidden_seq_emb.view(-1,
                                             max_len,
                                             1 + self.bidirectional,
                                             self.hidden_dim)
        return hidden_seq_emb


class GRUDecoder(DecoderBase):

    def __init__(self, input_dim: int, hidden_dim: int, num_layers: int,
                 dropout: float, batch_size: int, rank: int=-1,
                 no_dropout: bool=False):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.dropout = dropout
        self.batch_size = batch_size
        self.rank = rank
        self.model = nn.GRU(input_size=self.input_dim,
                            hidden_size=self.hidden_dim,
                            num_layers=self.num_layers,
                            batch_first=True,
                            bidirectional=False,
                            dropout=self.dropout if not no_dropout else 0
        )
        if self.rank >= 0:
            if torch.cuda.is_available():
                self.model = self.model.to(self.rank)
            else:
                # support mac mps
                self.model = self.model.to(torch.device("mps", self.rank))
        self.init_hidden(self.batch_size)

    def init_hidden(self, bsize):
        self.hidden_dict['h'] = torch.zeros((self.num_layers,
                                             min(self.batch_size, bsize),
                                             self.hidden_dim),
                                            requires_grad=False)
        if self.rank >= 0:
            if torch.cuda.is_available():
                self.hidden_dict['h'] = self.hidden_dict['h'].to(self.rank)
            else:
                self.hidden_dict['h'] = self.hidden_dict['h'].to(torch.device("mps", self.rank))

    def to(self, device):
        newself = super().to(device)
        newself.model = newself.model.to(device)
        for k in self.hidden_dict.keys():
            newself.hidden_dict[k] = newself.hidden_dict[k].to(device)
        newself.rank = next(newself.parameters()).get_device()
        return newself

    def forward_one_step(self, tgt_emb_in):
        ''' one-step forward model

        Parameters
        ----------
        tgt_emb_in : Tensor, shape (batch_size, input_dim)

        Returns
        -------
        Tensor, shape (batch_size, hidden_dim)
        '''
        bsize = tgt_emb_in.size(0)
        tgt_emb_out, self.hidden_dict['h'] \
            = self.model(tgt_emb_in.view(bsize, 1, -1),
                         self.hidden_dict['h'])
        return tgt_emb_out


class NodeMLP(nn.Module):
    def __init__(self, input_size, output_size, hidden_size):
        super().__init__()
        self.lin1 = nn.Linear(input_size, hidden_size)
        self.nbat = nn.BatchNorm1d(hidden_size)
        self.lin2 = nn.Linear(hidden_size, output_size)
        
    def forward(self, x):
        x = self.lin1(x)
        x = self.nbat(x)
        x = x.relu()
        x = self.lin2(x)
        return x
    
    
class GINLayer(MessagePassing):
    def __init__(self, node_input_size, node_output_size, node_hidden_size, edge_input_size):
        super().__init__()
        self.node_mlp = NodeMLP(node_input_size, node_output_size, node_hidden_size)
        self.edge_mlp = FeatureEmbedding(edge_input_size, node_output_size)
        self.eps = nn.Parameter(torch.tensor([0.0]))
        
    def forward(self, x, edge_index, edge_attr):
        msg = self.propagate(edge_index, x=x ,edge_attr=edge_attr)
        x = (1.0 + self.eps) * x + msg
        x = x.relu()
        x = self.node_mlp(x)
        return x
    
    def message(self, x_j, edge_attr):
        edge_attr = self.edge_mlp(edge_attr)
        x_j = x_j + edge_attr
        x_j = x_j.relu()
        return x_j
    
    def update(self, aggr_out):
        return aggr_out

#TODO implement the case where features of atoms and edges are considered
# Check GraphMVP and ogb (open graph benchmark) to realize this
class GIN(torch.nn.Module):
    def __init__(self, node_feature_size, edge_feature_size, hidden_channels=64, 
                 proximity_size=3, dropout=0.1):
        super().__init__()
        #print("(num node features, num edge features)=", (node_feature_size, edge_feature_size))
        hsize = hidden_channels * 2
        atom_dim, edge_dim = get_atom_edge_feature_dims()
        self.trans = FeatureEmbedding(atom_dim, hidden_channels)
        ml = []
        for _ in range(proximity_size):
            ml.append(GINLayer(hidden_channels, hidden_channels, hsize, edge_dim))
        self.mlist = nn.ModuleList(ml)
        #It is possible to calculate relu with x.relu() where x is an output
        #self.activations = nn.ModuleList(actl)
        self.dropout = dropout
        self.proximity_size = proximity_size
        
    def forward(self, x, edge_index, edge_attr, batch_size):
        x = x.to(torch.float)
        #print("before: edge_weight.shape=", edge_attr.shape)
        edge_attr = edge_attr.to(torch.float)
        #print("after: edge_weight.shape=", edge_attr.shape)
        x = self.trans(x)
        # TODO Check if this x is consistent with global_add_pool
        hlist = [global_add_pool(x, batch_size)]
        for id, m in enumerate(self.mlist):
            x = m(x, edge_index=edge_index, edge_attr=edge_attr)
            #print("Done with one layer") 
            ###if id != self.proximity_size - 1:
            x = x.relu()
            x = F.dropout(x, p=self.dropout, training=self.training)
            #h = global_mean_pool(x, batch_size)
            h = global_add_pool(x, batch_size)
            hlist.append(h)
            #print("Done with one relu call: x.shape=", x.shape)
        #print("calling golbal mean pool")
        #print("calling dropout x.shape=", x.shape)
        #print("x=", x)
        #print("hlist[0].shape=", hlist[0].shape)
        x = torch.cat(hlist, dim=1)
        #print("x.shape=", x.shape)
        x = F.dropout(x, p=self.dropout, training=self.training)

        return x


# TODO copied from MHG implementation and adapted here. 
class GrammarSeq2SeqVAE(nn.Module):

    '''
    Variational seq2seq with grammar.
    TODO: rewrite this class using mixin
    '''

    def __init__(self, hrg, rank=-1, latent_dim=64, max_len=80,
                 batch_size=64, padding_idx=-1, 
                 encoder_params={'hidden_dim': 384, 'num_layers': 3, 'bidirectional': True,
                                 'dropout': 0.1},
                 decoder_params={'hidden_dim': 384, #'num_layers': 2,
                                 'num_layers': 3,
                                 'dropout': 0.1},
                 prod_rule_embed_params={'out_dim': 128},
                 no_dropout=False):

        super().__init__()
        # TODO USE GRU FOR ENCODING AND DECODING
        self.hrg = hrg
        self.rank = rank
        self.prod_rule_corpus = hrg.prod_rule_corpus
        self.prod_rule_embed_params = prod_rule_embed_params

        self.vocab_size = hrg.num_prod_rule + 1
        self.batch_size = batch_size
        self.padding_idx = np.mod(padding_idx, self.vocab_size)
        self.no_dropout = no_dropout

        self.latent_dim = latent_dim
        self.max_len = max_len
        self.encoder_params = encoder_params
        self.decoder_params = decoder_params
        
        # TODO Simple embedding is used. Check if a domain-dependent embedding works or not. 
        embed_out_dim = self.prod_rule_embed_params['out_dim']        
        #use MolecularProdRuleEmbedding later on
        self.src_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
                                          padding_idx=self.padding_idx)
        self.tgt_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
                                          padding_idx=self.padding_idx)

        # USE a GRU-based encoder in MHG
        self.encoder = GRUEncoder(input_dim=embed_out_dim, batch_size=self.batch_size,
                                      rank=self.rank, no_dropout=self.no_dropout,
                                  **self.encoder_params)

        lin_dim = (self.encoder_params.get('bidirectional', False) + 1) * self.encoder_params['hidden_dim']
        lin_out_dim = self.latent_dim
        self.hidden2mean = nn.Linear(lin_dim, lin_out_dim, bias=False)
        self.hidden2logvar = nn.Linear(lin_dim, lin_out_dim)
   
        # USE a GRU-based decoder in MHG
        self.decoder = GRUDecoder(input_dim=embed_out_dim, batch_size=self.batch_size,
                                  rank=self.rank, no_dropout=self.no_dropout, **self.decoder_params)
        self.latent2tgt_emb = nn.Linear(self.latent_dim, embed_out_dim)
        self.latent2hidden_dict = nn.ModuleDict()
        dec_lin_out_dim = self.decoder_params['hidden_dim']
        for each_hidden in self.decoder.hidden_dict.keys():
            self.latent2hidden_dict[each_hidden] = nn.Linear(self.latent_dim, dec_lin_out_dim)
            if self.rank >= 0:
                if torch.cuda.is_available():
                    self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(self.rank)
                else:
                    # support mac mps
                    self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(torch.device("mps", self.rank))

        self.dec2vocab = nn.Linear(dec_lin_out_dim, self.vocab_size)
        self.encoder.init_hidden(self.batch_size)
        self.decoder.init_hidden(self.batch_size)

        # TODO Do we need this?
        if hasattr(self.src_embedding, 'weight'):
            self.src_embedding.weight.data.uniform_(-0.1, 0.1)
        if hasattr(self.tgt_embedding, 'weight'):
            self.tgt_embedding.weight.data.uniform_(-0.1, 0.1)
            
        self.encoder.init_hidden(self.batch_size)
        self.decoder.init_hidden(self.batch_size)
    
    def to(self, device):
        newself = super().to(device)
        newself.src_embedding = newself.src_embedding.to(device)
        newself.tgt_embedding = newself.tgt_embedding.to(device)
        newself.encoder = newself.encoder.to(device)
        newself.decoder = newself.decoder.to(device)
        newself.dec2vocab = newself.dec2vocab.to(device)
        newself.hidden2mean = newself.hidden2mean.to(device)
        newself.hidden2logvar = newself.hidden2logvar.to(device)
        newself.latent2tgt_emb = newself.latent2tgt_emb.to(device)
        newself.latent2hidden_dict = newself.latent2hidden_dict.to(device)
        return newself
    
    def forward(self, in_seq, out_seq):
        ''' forward model

        Parameters
        ----------
        in_seq : Variable, shape (batch_size, length)
            each element corresponds to word index.
            where the index should be less than `vocab_size`

        Returns
        -------
        Variable, shape (batch_size, length, vocab_size)
            logit of each word (applying softmax yields the probability)
        '''
        mu, logvar = self.encode(in_seq)
        z = self.reparameterize(mu, logvar)
        return self.decode(z, out_seq), mu, logvar

    def encode(self, in_seq):
        src_emb = self.src_embedding(in_seq)
        src_h = self.encoder.forward(src_emb)
        if self.encoder_params.get('bidirectional', False):
            concat_src_h = torch.cat((src_h[:, -1, 0, :], src_h[:, 0, 1, :]), dim=1)
            return self.hidden2mean(concat_src_h), self.hidden2logvar(concat_src_h)
        else:
            return self.hidden2mean(src_h[:, -1, :]), self.hidden2logvar(src_h[:, -1, :])

    def reparameterize(self, mu, logvar, training=True):
        if training:
            std = logvar.mul(0.5).exp_()
            device = next(self.parameters()).device
            eps = Variable(std.data.new(std.size()).normal_())
            if device != eps.get_device():
                eps.to(device)
            return eps.mul(std).add_(mu)
        else:
            return mu

    #TODO Not tested. Need to implement this in case of molecular structure generation
    def sample(self, sample_size=-1, deterministic=True, return_z=False):
        self.eval()
        self.init_hidden()
        if sample_size == -1:
            sample_size = self.batch_size

        num_iter = int(np.ceil(sample_size / self.batch_size))
        hg_list = []
        z_list = []
        for _ in range(num_iter):
            z = Variable(torch.normal(
                torch.zeros(self.batch_size, self.latent_dim),
                torch.ones(self.batch_size * self.latent_dim))).cuda()
            _, each_hg_list = self.decode(z, deterministic=deterministic)
            z_list.append(z)
            hg_list += each_hg_list
        z = torch.cat(z_list)[:sample_size]
        hg_list = hg_list[:sample_size]
        if return_z:
            return hg_list, z.cpu().detach().numpy()
        else:
            return hg_list

    def decode(self, z=None, out_seq=None, deterministic=True):
        if z is None:
            z = Variable(torch.normal(
                torch.zeros(self.batch_size, self.latent_dim),
                torch.ones(self.batch_size * self.latent_dim)))
        if self.rank >= 0:
            z = z.to(next(self.parameters()).device)

        hidden_dict_0 = {}
        for each_hidden in self.latent2hidden_dict.keys():
            hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
        bsize = z.size(0)
        self.decoder.init_hidden(bsize) 
        self.decoder.feed_hidden(hidden_dict_0)

        if out_seq is not None:
            tgt_emb0 = self.latent2tgt_emb(z)
            tgt_emb0 = tgt_emb0.view(tgt_emb0.shape[0], 1, tgt_emb0.shape[1])
            out_seq_emb = self.tgt_embedding(out_seq)
            tgt_emb = torch.cat((tgt_emb0, out_seq_emb), dim=1)[:, :-1, :]
            tgt_emb_pred_list = []
            for each_idx in range(self.max_len):
                tgt_emb_pred = self.decoder.forward_one_step(tgt_emb[:, each_idx, :].view(bsize, 1, -1))
                tgt_emb_pred_list.append(tgt_emb_pred)
            vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
            return vocab_logit
        else:
            with torch.no_grad():
                tgt_emb = self.latent2tgt_emb(z)
                tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
                tgt_emb_pred_list = []
                stack_list = []
                hg_list = []
                nt_symbol_list = []
                nt_edge_list = []
                gen_finish_list = []
                for _ in range(bsize):
                    stack_list.append([])
                    hg_list.append(None)
                    nt_symbol_list.append(NTSymbol(degree=0,
                                                   is_aromatic=False,
                                                   bond_symbol_list=[]))
                    nt_edge_list.append(None)
                    gen_finish_list.append(False)

                for idx in range(self.max_len):
                    tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
                    tgt_emb_pred_list.append(tgt_emb_pred)
                    vocab_logit = self.dec2vocab(tgt_emb_pred)
                    for each_batch_idx in range(bsize):
                        if not gen_finish_list[each_batch_idx]: # if generation has not finished
                            # get production rule greedily
                            prod_rule = self.hrg.prod_rule_corpus.sample(vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
                                                                         nt_symbol_list[each_batch_idx],
                                                                         deterministic=deterministic)
                            # convert production rule into an index
                            tgt_id = self.hrg.prod_rule_list.index(prod_rule)
                            # apply the production rule
                            hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
                            # add non-terminals to the stack
                            stack_list[each_batch_idx].extend(nt_edges[::-1])
                            # if the stack size is 0, generation has finished!
                            if len(stack_list[each_batch_idx]) == 0:
                                gen_finish_list[each_batch_idx] = True
                            else:
                                nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
                                nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
                        else:
                            tgt_id = np.mod(self.padding_idx, self.vocab_size)
                        indice_tensor = torch.LongTensor([tgt_id])
                        device = next(self.parameters()).device
                        if indice_tensor.device != device: 
                            indice_tensor = indice_tensor.to(device)
                        tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)
                vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
                #for id, v in enumerate(gen_finish_list):
                #if not v:
                #    print("bacth id={} not finished generating a sequence: ".format(id))
                return gen_finish_list, vocab_logit, hg_list


# TODO A lot of duplicates with GrammarVAE. Clean up it if necessary
class GrammarGINVAE(nn.Module):

    '''
    Variational autoencoder based on GIN and grammar
    '''

    def __init__(self, hrg, rank=-1, max_len=80,
                 batch_size=64, padding_idx=-1, 
                 encoder_params={'node_feature_size': 4, 'edge_feature_size': 3, 
                                 'hidden_channels': 64, 'proximity_size': 3,
                                 'dropout': 0.1},
                 decoder_params={'hidden_dim': 384, 'num_layers': 3,
                                 'dropout': 0.1},
                 prod_rule_embed_params={'out_dim': 128},
                 no_dropout=False):

        super().__init__()
        # TODO USE GRU FOR ENCODING AND DECODING
        self.hrg = hrg
        self.rank = rank
        self.prod_rule_corpus = hrg.prod_rule_corpus
        self.prod_rule_embed_params = prod_rule_embed_params

        self.vocab_size = hrg.num_prod_rule + 1
        self.batch_size = batch_size
        self.padding_idx = np.mod(padding_idx, self.vocab_size)
        self.no_dropout = no_dropout
        self.max_len = max_len
        self.encoder_params = encoder_params
        self.decoder_params = decoder_params
        
        # TODO Simple embedding is used. Check if a domain-dependent embedding works or not. 
        embed_out_dim = self.prod_rule_embed_params['out_dim']        
        #use MolecularProdRuleEmbedding later on
        self.tgt_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
                                          padding_idx=self.padding_idx)

        self.encoder = GIN(**self.encoder_params)
        self.latent_dim = self.encoder_params['hidden_channels']
        self.proximity_size = self.encoder_params['proximity_size']
        hidden_dim = self.decoder_params['hidden_dim']
        self.hidden2mean = nn.Linear(self.latent_dim * (1 + self.proximity_size), self.latent_dim, bias=False)
        self.hidden2logvar = nn.Linear(self.latent_dim * (1 + self.proximity_size), self.latent_dim)
   
        self.decoder = GRUDecoder(input_dim=embed_out_dim, batch_size=self.batch_size,
                                  rank=self.rank, no_dropout=self.no_dropout, **self.decoder_params)
        self.latent2tgt_emb = nn.Linear(self.latent_dim, embed_out_dim)
        self.latent2hidden_dict = nn.ModuleDict()
        for each_hidden in self.decoder.hidden_dict.keys():
            self.latent2hidden_dict[each_hidden] = nn.Linear(self.latent_dim, hidden_dim)
            if self.rank >= 0:
                if torch.cuda.is_available():
                    self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(self.rank)
                else:
                    # support mac mps
                    self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(torch.device("mps", self.rank))

        self.dec2vocab = nn.Linear(hidden_dim, self.vocab_size)
        self.decoder.init_hidden(self.batch_size)

        # TODO Do we need this?
        if hasattr(self.tgt_embedding, 'weight'):
            self.tgt_embedding.weight.data.uniform_(-0.1, 0.1)
        self.decoder.init_hidden(self.batch_size)
    
    def to(self, device):
        newself = super().to(device)
        newself.encoder = newself.encoder.to(device)
        newself.decoder = newself.decoder.to(device)
        newself.rank = next(newself.encoder.parameters()).get_device()
        return newself
    
    def forward(self, x, edge_index, edge_attr, batch_size, out_seq=None, sched_prob = None):
        mu, logvar = self.encode(x, edge_index, edge_attr, batch_size)
        z = self.reparameterize(mu, logvar)
        return self.decode(z, out_seq, sched_prob=sched_prob), mu, logvar

    #TODO Not tested. Need to implement this in case of molecular structure generation
    def sample(self, sample_size=-1, deterministic=True, return_z=False):
        self.eval()
        self.init_hidden()
        if sample_size == -1:
            sample_size = self.batch_size

        num_iter = int(np.ceil(sample_size / self.batch_size))
        hg_list = []
        z_list = []
        for _ in range(num_iter):
            z = Variable(torch.normal(
                torch.zeros(self.batch_size, self.latent_dim),
                torch.ones(self.batch_size * self.latent_dim))).cuda()
            _, each_hg_list = self.decode(z, deterministic=deterministic)
            z_list.append(z)
            hg_list += each_hg_list
        z = torch.cat(z_list)[:sample_size]
        hg_list = hg_list[:sample_size]
        if return_z:
            return hg_list, z.cpu().detach().numpy()
        else:
            return hg_list

    def decode(self, z=None, out_seq=None, deterministic=True, sched_prob=None):
        if z is None:
            z = Variable(torch.normal(
                torch.zeros(self.batch_size, self.latent_dim),
                torch.ones(self.batch_size * self.latent_dim)))
        if self.rank >= 0:
            z = z.to(next(self.parameters()).device)

        hidden_dict_0 = {}
        for each_hidden in self.latent2hidden_dict.keys():
            hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
        bsize = z.size(0)
        self.decoder.init_hidden(bsize) 
        self.decoder.feed_hidden(hidden_dict_0)

        if out_seq is not None:
            tgt_emb0 = self.latent2tgt_emb(z)
            tgt_emb0 = tgt_emb0.view(tgt_emb0.shape[0], 1, tgt_emb0.shape[1])
            out_seq_emb = self.tgt_embedding(out_seq)
            tgt_emb = torch.cat((tgt_emb0, out_seq_emb), dim=1)[:, :-1, :]
            tgt_emb_pred_list = []
            tgt_emb_pred = None
            for each_idx in range(self.max_len):
                if tgt_emb_pred is None or sched_prob is None or torch.rand(1)[0] <= sched_prob:
                    inp = tgt_emb[:, each_idx, :].view(bsize, 1, -1)
                else:
                    cur_logit = self.dec2vocab(tgt_emb_pred)
                    yi = torch.argmax(cur_logit, dim=2)
                    inp = self.tgt_embedding(yi)
                tgt_emb_pred = self.decoder.forward_one_step(inp)
                tgt_emb_pred_list.append(tgt_emb_pred)
            vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
            return vocab_logit
        else:
            with torch.no_grad():
                tgt_emb = self.latent2tgt_emb(z)
                tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
                tgt_emb_pred_list = []
                stack_list = []
                hg_list = []
                nt_symbol_list = []
                nt_edge_list = []
                gen_finish_list = []
                for _ in range(bsize):
                    stack_list.append([])
                    hg_list.append(None)
                    nt_symbol_list.append(NTSymbol(degree=0,
                                                   is_aromatic=False,
                                                   bond_symbol_list=[]))
                    nt_edge_list.append(None)
                    gen_finish_list.append(False)

                for _ in range(self.max_len):
                    tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
                    tgt_emb_pred_list.append(tgt_emb_pred)
                    vocab_logit = self.dec2vocab(tgt_emb_pred)
                    for each_batch_idx in range(bsize):
                        if not gen_finish_list[each_batch_idx]: # if generation has not finished
                            # get production rule greedily
                            prod_rule = self.hrg.prod_rule_corpus.sample(vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
                                                                         nt_symbol_list[each_batch_idx],
                                                                         deterministic=deterministic)
                            # convert production rule into an index
                            tgt_id = self.hrg.prod_rule_list.index(prod_rule)
                            # apply the production rule
                            hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
                            # add non-terminals to the stack
                            stack_list[each_batch_idx].extend(nt_edges[::-1])
                            # if the stack size is 0, generation has finished!
                            if len(stack_list[each_batch_idx]) == 0:
                                gen_finish_list[each_batch_idx] = True
                            else:
                                nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
                                nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
                        else:
                            tgt_id = np.mod(self.padding_idx, self.vocab_size)
                        indice_tensor = torch.LongTensor([tgt_id])
                        if self.rank >= 0:
                            indice_tensor = indice_tensor.to(next(self.parameters()).device)
                        tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)
                vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
                return gen_finish_list, vocab_logit, hg_list

    #TODO Not tested. Need to implement this in case of molecular structure generation
    def conditional_distribution(self, z, tgt_id_list):
        self.eval()
        self.init_hidden()
        z = z.cuda()

        hidden_dict_0 = {}
        for each_hidden in self.latent2hidden_dict.keys():
            hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
        self.decoder.feed_hidden(hidden_dict_0)

        with torch.no_grad():
            tgt_emb = self.latent2tgt_emb(z)
            tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
            nt_symbol_list = []
            stack_list = []
            hg_list = []
            nt_edge_list = []
            gen_finish_list = []
            for _ in range(self.batch_size):
                nt_symbol_list.append(NTSymbol(degree=0,
                                               is_aromatic=False,
                                               bond_symbol_list=[]))
                stack_list.append([])
                hg_list.append(None)
                nt_edge_list.append(None)
                gen_finish_list.append(False)

            for each_position in range(len(tgt_id_list[0])):
                tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
                for each_batch_idx in range(self.batch_size):
                    if not gen_finish_list[each_batch_idx]: # if generation has not finished
                        # use the prespecified target ids
                        tgt_id = tgt_id_list[each_batch_idx][each_position]
                        prod_rule = self.hrg.prod_rule_list[tgt_id]
                        # apply the production rule
                        hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
                        # add non-terminals to the stack
                        stack_list[each_batch_idx].extend(nt_edges[::-1])
                        # if the stack size is 0, generation has finished!
                        if len(stack_list[each_batch_idx]) == 0:
                            gen_finish_list[each_batch_idx] = True
                        else:
                            nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
                            nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
                    else:
                        tgt_id = np.mod(self.padding_idx, self.vocab_size)
                    indice_tensor = torch.LongTensor([tgt_id])
                    indice_tensor = indice_tensor.cuda()
                    tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)

            # last one step
            conditional_logprob_list = []
            tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
            vocab_logit = self.dec2vocab(tgt_emb_pred)
            for each_batch_idx in range(self.batch_size):
                if not gen_finish_list[each_batch_idx]: # if generation has not finished
                    # get production rule greedily
                    masked_logprob = self.hrg.prod_rule_corpus.masked_logprob(
                        vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
                        nt_symbol_list[each_batch_idx])
                    conditional_logprob_list.append(masked_logprob)
                else:
                    conditional_logprob_list.append(None)
        return conditional_logprob_list

    #TODO Not tested. Need to implement this in case of molecular structure generation
    def decode_with_beam_search(self, z, beam_width=1):
        ''' Decode a latent vector using beam search.

        Parameters
        ----------
        z
            latent vector
        beam_width : int
            parameter for beam search

        Returns
        -------
        List of Hypergraphs
        '''
        if self.batch_size != 1:
            raise ValueError('this method works only under batch_size=1')
        if self.padding_idx != -1:
            raise ValueError('this method works only under padding_idx=-1')
        top_k_tgt_id_list = [[]] * beam_width
        logprob_list = [0.] * beam_width

        for each_len in range(self.max_len):
            expanded_logprob_list = np.repeat(logprob_list, self.vocab_size) # including padding_idx
            expanded_length_list = np.array([0] * (beam_width * self.vocab_size))
            for each_beam_idx, each_candidate in enumerate(top_k_tgt_id_list):
                conditional_logprob = self.conditional_distribution(z, [each_candidate])[0]
                if conditional_logprob is None:
                    expanded_logprob_list[(each_beam_idx + 1) * self.vocab_size - 1]\
                        = logprob_list[each_beam_idx]
                    expanded_logprob_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size - 1]\
                        = -np.inf
                    expanded_length_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size]\
                        = len(each_candidate)
                else:
                    expanded_logprob_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size - 1]\
                        = logprob_list[each_beam_idx] + conditional_logprob
                    expanded_logprob_list[(each_beam_idx + 1) * self.vocab_size - 1]\
                        = -np.inf
                    expanded_length_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size]\
                        = len(each_candidate) + 1
            score_list = np.array(expanded_logprob_list) / np.array(expanded_length_list)
            if each_len == 0:
                top_k_list = np.argsort(score_list[:self.vocab_size])[::-1][:beam_width]
            else:
                top_k_list = np.argsort(score_list)[::-1][:beam_width]
            next_top_k_tgt_id_list = []
            next_logprob_list = []
            for each_top_k in top_k_list:
                beam_idx = each_top_k // self.vocab_size
                vocab_idx = each_top_k % self.vocab_size
                if vocab_idx == self.vocab_size - 1:
                    next_top_k_tgt_id_list.append(top_k_tgt_id_list[beam_idx])
                    next_logprob_list.append(expanded_logprob_list[each_top_k])
                else:
                    next_top_k_tgt_id_list.append(top_k_tgt_id_list[beam_idx] + [vocab_idx])
                    next_logprob_list.append(expanded_logprob_list[each_top_k])
            top_k_tgt_id_list = next_top_k_tgt_id_list
            logprob_list = next_logprob_list

        # construct hypergraphs
        hg_list = []
        for each_tgt_id_list in top_k_tgt_id_list:
            hg = None
            stack = []
            nt_edge = None
            for each_idx, each_prod_rule_id in enumerate(each_tgt_id_list):
                prod_rule = self.hrg.prod_rule_list[each_prod_rule_id]
                hg, nt_edges = prod_rule.applied_to(hg, nt_edge)
                stack.extend(nt_edges[::-1])
                try:
                    nt_edge = stack.pop()
                except IndexError:
                    if each_idx == len(each_tgt_id_list) - 1:
                        break
                    else:
                        raise ValueError('some bugs')
            hg_list.append(hg)
        return hg_list

    def graph_embed(self, x, edge_index, edge_attr, batch_size):
        src_h = self.encoder.forward(x, edge_index, edge_attr, batch_size)
        return src_h        

    def encode(self, x, edge_index, edge_attr, batch_size):
        #print("device for src_emb=", src_emb.get_device())
        #print("device for self.encoder=", next(self.encoder.parameters()).get_device())
        src_h = self.graph_embed(x, edge_index, edge_attr, batch_size)
        mu, lv = self.get_mean_var(src_h)
        return mu, lv
    
    def get_mean_var(self, src_h):
        #src_h = torch.tanh(src_h)
        mu = self.hidden2mean(src_h)
        lv = self.hidden2logvar(src_h)
        mu = torch.tanh(mu)
        lv = torch.tanh(lv)
        return mu, lv

    def reparameterize(self, mu, logvar, training=True):
        if training:
            std = logvar.mul(0.5).exp_()
            eps = Variable(std.data.new(std.size()).normal_())
            if self.rank >= 0:
                eps = eps.to(next(self.parameters()).device)
            return eps.mul(std).add_(mu)
        else:
            return mu

# Copied from the MHG implementation and adapted
class GrammarVAELoss(_Loss):

    '''
    a loss function for Grammar VAE

    Attributes
    ----------
    hrg : HyperedgeReplacementGrammar
    beta : float
        coefficient of KL divergence
    '''

    def __init__(self, rank, hrg, beta=1.0, **kwargs):
        super().__init__(**kwargs)
        self.hrg = hrg
        self.beta = beta
        self.rank = rank

    def forward(self, mu, logvar, in_seq_pred, in_seq):
        ''' compute VAE loss

        Parameters
        ----------
        in_seq_pred : torch.Tensor, shape (batch_size, max_len, vocab_size)
            logit
        in_seq : torch.Tensor, shape (batch_size, max_len)
            each element corresponds to a word id in vocabulary.
        mu : torch.Tensor, shape (batch_size, hidden_dim)
        logvar : torch.Tensor, shape (batch_size, hidden_dim)
            mean and log variance of the normal distribution
        '''
        batch_size = in_seq_pred.shape[0]
        max_len = in_seq_pred.shape[1]
        vocab_size = in_seq_pred.shape[2]
        mask = torch.zeros(in_seq_pred.shape)
        
        for each_batch in range(batch_size):
            flag = True
            for each_idx in range(max_len):
                prod_rule_idx = in_seq[each_batch, each_idx]
                if prod_rule_idx == vocab_size - 1:
                    #### DETERMINE WHETHER THIS SHOULD BE SKIPPED OR NOT
                    mask[each_batch, each_idx, prod_rule_idx] = 1
                    #break
                    continue
                lhs = self.hrg.prod_rule_corpus.prod_rule_list[prod_rule_idx].lhs_nt_symbol
                lhs_idx = self.hrg.prod_rule_corpus.nt_symbol_list.index(lhs)
                mask[each_batch, each_idx, :-1] = torch.FloatTensor(self.hrg.prod_rule_corpus.lhs_in_prod_rule[lhs_idx])
            if self.rank >= 0:
                mask = mask.to(next(self.parameters()).device)
        in_seq_pred = mask * in_seq_pred

        cross_entropy = F.cross_entropy(
            in_seq_pred.view(-1, vocab_size),
            in_seq.view(-1),
            reduction='sum',
            #ignore_index=self.ignore_index if self.ignore_index is not None else -100
            )
        kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
        return cross_entropy + self.beta * kl_div


class VAELoss(_Loss):
    def __init__(self, beta=0.01):
        super().__init__()
        self.beta = beta

    def forward(self, mean, log_var, dec_outputs, targets):

        device = mean.get_device()
        if device >= 0:
            targets = targets.to(mean.get_device())
        reconstruction = F.cross_entropy(dec_outputs.view(-1, dec_outputs.size(2)), targets.view(-1), reduction='sum')
        
        KL = 0.5 * torch.sum(1 + log_var - mean ** 2 - torch.exp(log_var))
        loss = - self.beta * KL + reconstruction
        return loss