Commit 
							
							·
						
						c2435ef
	
1
								Parent(s):
							
							ffd2463
								
fix inference
Browse files- Prithvi_100M_config.yaml +18 -18
 - Prithvi_run_inference.py +231 -113
 - README.md +3 -1
 
    	
        Prithvi_100M_config.yaml
    CHANGED
    
    | 
         @@ -12,25 +12,25 @@ model_args: 
     | 
|
| 12 | 
         
             
              tubelet_size: 1
         
     | 
| 13 | 
         
             
            train_params:
         
     | 
| 14 | 
         
             
              bands:
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
             
              data_mean:
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
             
              data_std:
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
             
              mask_ratio: 0.75
         
     | 
| 36 | 
         
             
              random_cropping: true
         
     | 
| 
         | 
|
| 12 | 
         
             
              tubelet_size: 1
         
     | 
| 13 | 
         
             
            train_params:
         
     | 
| 14 | 
         
             
              bands:
         
     | 
| 15 | 
         
            +
                - B02
         
     | 
| 16 | 
         
            +
                - B03
         
     | 
| 17 | 
         
            +
                - B04
         
     | 
| 18 | 
         
            +
                - B05
         
     | 
| 19 | 
         
            +
                - B06
         
     | 
| 20 | 
         
            +
                - B07
         
     | 
| 21 | 
         
             
              data_mean:
         
     | 
| 22 | 
         
            +
                - 775.2290211032589
         
     | 
| 23 | 
         
            +
                - 1080.992780391705
         
     | 
| 24 | 
         
            +
                - 1228.5855250417867
         
     | 
| 25 | 
         
            +
                - 2497.2022620507532
         
     | 
| 26 | 
         
            +
                - 2204.2139147975554
         
     | 
| 27 | 
         
            +
                - 1610.8324823273745
         
     | 
| 28 | 
         
             
              data_std:
         
     | 
| 29 | 
         
            +
                - 1281.526139861424
         
     | 
| 30 | 
         
            +
                - 1270.0297974547493
         
     | 
| 31 | 
         
            +
                - 1399.4802505642526
         
     | 
| 32 | 
         
            +
                - 1368.3446143747644
         
     | 
| 33 | 
         
            +
                - 1291.6764008585435
         
     | 
| 34 | 
         
            +
                - 1154.505683480695
         
     | 
| 35 | 
         
             
              mask_ratio: 0.75
         
     | 
| 36 | 
         
             
              random_cropping: true
         
     | 
    	
        Prithvi_run_inference.py
    CHANGED
    
    | 
         @@ -1,7 +1,7 @@ 
     | 
|
| 1 | 
         
             
            import argparse
         
     | 
| 2 | 
         
             
            import functools
         
     | 
| 3 | 
         
             
            import os
         
     | 
| 4 | 
         
            -
            from typing import List
         
     | 
| 5 | 
         | 
| 6 | 
         
             
            import numpy as np
         
     | 
| 7 | 
         
             
            import rasterio
         
     | 
| 
         @@ -17,7 +17,7 @@ PERCENTILES = (0.1, 99.9) 
     | 
|
| 17 | 
         | 
| 18 | 
         | 
| 19 | 
         
             
            def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
         
     | 
| 20 | 
         
            -
                """ 
     | 
| 21 | 
         
             
                    original range using *data_mean* and *data_std* and then lowest and highest percentiles are
         
     | 
| 22 | 
         
             
                    removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
         
     | 
| 23 | 
         | 
| 
         @@ -65,7 +65,7 @@ def process_channel_group(orig_img, new_img, channels, data_mean, data_std): 
     | 
|
| 65 | 
         | 
| 66 | 
         | 
| 67 | 
         
             
            def read_geotiff(file_path: str):
         
     | 
| 68 | 
         
            -
                """ 
     | 
| 69 | 
         | 
| 70 | 
         
             
                Args:
         
     | 
| 71 | 
         
             
                    file_path: path to image file.
         
     | 
| 
         @@ -83,7 +83,7 @@ def read_geotiff(file_path: str): 
     | 
|
| 83 | 
         | 
| 84 | 
         | 
| 85 | 
         
             
            def save_geotiff(image, output_path: str, meta: dict):
         
     | 
| 86 | 
         
            -
                """ 
     | 
| 87 | 
         | 
| 88 | 
         
             
                Args:
         
     | 
| 89 | 
         
             
                    image: np.ndarray with shape (bands, height, width)
         
     | 
| 
         @@ -99,15 +99,19 @@ def save_geotiff(image, output_path: str, meta: dict): 
     | 
|
| 99 | 
         | 
| 100 | 
         | 
| 101 | 
         
             
            def _convert_np_uint8(float_image: torch.Tensor):
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
             
                image = float_image.numpy() * 255.0
         
     | 
| 104 | 
         
             
                image = image.astype(dtype=np.uint8)
         
     | 
| 105 | 
         | 
| 106 | 
         
             
                return image
         
     | 
| 107 | 
         | 
| 108 | 
         | 
| 109 | 
         
            -
            def load_example( 
     | 
| 110 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 111 | 
         | 
| 112 | 
         
             
                Args:
         
     | 
| 113 | 
         
             
                    file_paths: list of file paths .
         
     | 
| 
         @@ -126,21 +130,28 @@ def load_example(file_paths: List[str], mean: List[float], std: List[float]): 
     | 
|
| 126 | 
         
             
                    img, meta = read_geotiff(file)
         
     | 
| 127 | 
         | 
| 128 | 
         
             
                    # Rescaling (don't normalize on nodata)
         
     | 
| 129 | 
         
            -
                    img = np.moveaxis(img, 0, -1) 
     | 
| 
         | 
|
| 
         | 
|
| 130 | 
         
             
                    img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
         
     | 
| 131 | 
         | 
| 132 | 
         
             
                    imgs.append(img)
         
     | 
| 133 | 
         
             
                    metas.append(meta)
         
     | 
| 134 | 
         | 
| 135 | 
         
            -
                imgs = np.stack(imgs, axis=0) 
     | 
| 136 | 
         
            -
                imgs = np.moveaxis(imgs, -1, 0).astype( 
     | 
| 137 | 
         
             
                imgs = np.expand_dims(imgs, axis=0)  # add batch dim
         
     | 
| 138 | 
         | 
| 139 | 
         
             
                return imgs, metas
         
     | 
| 140 | 
         | 
| 141 | 
         | 
| 142 | 
         
            -
            def run_model( 
     | 
| 143 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 144 | 
         | 
| 145 | 
         
             
                Args:
         
     | 
| 146 | 
         
             
                    model: MAE model to run.
         
     | 
| 
         @@ -158,12 +169,16 @@ def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: floa 
     | 
|
| 158 | 
         
             
                    _, pred, mask = model(x, mask_ratio)
         
     | 
| 159 | 
         | 
| 160 | 
         
             
                # Create mask and prediction images (un-patchify)
         
     | 
| 161 | 
         
            -
                mask_img =  
     | 
| 
         | 
|
| 
         | 
|
| 162 | 
         
             
                pred_img = model.unpatchify(pred).detach().cpu()
         
     | 
| 163 | 
         | 
| 164 | 
         
             
                # Mix visible and predicted patches
         
     | 
| 165 | 
         
             
                rec_img = input_data.clone()
         
     | 
| 166 | 
         
            -
                rec_img[mask_img == 1] = pred_img[ 
     | 
| 
         | 
|
| 
         | 
|
| 167 | 
         | 
| 168 | 
         
             
                # Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
         
     | 
| 169 | 
         
             
                mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
         
     | 
| 
         @@ -171,8 +186,10 @@ def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: floa 
     | 
|
| 171 | 
         
             
                return rec_img, mask_img
         
     | 
| 172 | 
         | 
| 173 | 
         | 
| 174 | 
         
            -
            def save_rgb_imgs( 
     | 
| 175 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 176 | 
         | 
| 177 | 
         
             
                Args:
         
     | 
| 178 | 
         
             
                    input_img: input torch.Tensor with shape (C, T, H, W).
         
     | 
| 
         @@ -186,30 +203,39 @@ def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, 
     | 
|
| 186 | 
         
             
                """
         
     | 
| 187 | 
         | 
| 188 | 
         
             
                for t in range(input_img.shape[1]):
         
     | 
| 189 | 
         
            -
                    rgb_orig, rgb_pred = process_channel_group( 
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 193 | 
         | 
| 194 | 
         
             
                    rgb_mask = mask_img[channels, t, :, :] * rgb_orig
         
     | 
| 195 | 
         | 
| 196 | 
         
             
                    # Saving images
         
     | 
| 197 | 
         | 
| 198 | 
         
            -
                    save_geotiff( 
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 201 | 
         | 
| 202 | 
         
            -
                    save_geotiff( 
     | 
| 203 | 
         
            -
             
     | 
| 204 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 205 | 
         | 
| 206 | 
         
            -
                    save_geotiff( 
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 209 | 
         | 
| 210 | 
         | 
| 211 | 
         
             
            def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
         
     | 
| 212 | 
         
            -
                """ 
     | 
| 213 | 
         | 
| 214 | 
         
             
                Args:
         
     | 
| 215 | 
         
             
                    rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
         
     | 
| 
         @@ -224,7 +250,6 @@ def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data): 
     | 
|
| 224 | 
         
             
                std = torch.tensor(np.asarray(std)[:, None, None])
         
     | 
| 225 | 
         | 
| 226 | 
         
             
                for t in range(rec_img.shape[1]):
         
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
             
                    # Back to original data range
         
     | 
| 229 | 
         
             
                    rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)
         
     | 
| 230 | 
         | 
| 
         @@ -232,78 +257,98 @@ def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data): 
     | 
|
| 232 | 
         | 
| 233 | 
         
             
                    # Saving images
         
     | 
| 234 | 
         | 
| 235 | 
         
            -
                    save_geotiff( 
     | 
| 236 | 
         
            -
             
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
                     
     | 
| 240 | 
         
            -
             
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
             
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 247 | 
         
             
                os.makedirs(output_dir, exist_ok=True)
         
     | 
| 248 | 
         | 
| 249 | 
         
             
                # Get parameters --------
         
     | 
| 250 | 
         | 
| 251 | 
         
            -
                with open(yaml_file_path,  
     | 
| 252 | 
         
             
                    params = yaml.safe_load(f)
         
     | 
| 253 | 
         | 
| 254 | 
         
             
                # data related
         
     | 
| 
         | 
|
| 255 | 
         
             
                num_frames = len(data_files)
         
     | 
| 256 | 
         
            -
                 
     | 
| 257 | 
         
            -
                 
     | 
| 258 | 
         
            -
                 
     | 
| 259 | 
         
            -
                std = params['data_std']
         
     | 
| 260 | 
         | 
| 261 | 
         
             
                # model related
         
     | 
| 262 | 
         
            -
                 
     | 
| 263 | 
         
            -
                 
     | 
| 264 | 
         
            -
                 
     | 
| 265 | 
         
            -
                 
     | 
| 266 | 
         
            -
                 
     | 
| 267 | 
         
            -
                 
     | 
| 268 | 
         
            -
                 
     | 
| 269 | 
         
            -
                 
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
                 
     | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
            -
                 
     | 
| 274 | 
         
            -
             
     | 
| 275 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 276 | 
         
             
                if len(data_files) != 3:
         
     | 
| 277 | 
         
            -
                    print( 
     | 
| 
         | 
|
| 
         | 
|
| 278 | 
         | 
| 279 | 
         
             
                if torch.cuda.is_available():
         
     | 
| 280 | 
         
            -
                    device = torch.device( 
     | 
| 281 | 
         
             
                else:
         
     | 
| 282 | 
         
            -
                    device = torch.device( 
     | 
| 283 | 
         | 
| 284 | 
         
             
                print(f"Using {device} device.\n")
         
     | 
| 285 | 
         | 
| 286 | 
         
             
                # Loading data ---------------------------------------------------------------------------------
         
     | 
| 287 | 
         | 
| 288 | 
         
            -
                input_data, meta_data = load_example( 
     | 
| 
         | 
|
| 
         | 
|
| 289 | 
         | 
| 290 | 
         
             
                # Create model and load checkpoint -------------------------------------------------------------
         
     | 
| 291 | 
         | 
| 292 | 
         
             
                model = MaskedAutoencoderViT(
         
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
             
     | 
| 295 | 
         
            -
             
     | 
| 296 | 
         
            -
             
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
             
     | 
| 299 | 
         
            -
             
     | 
| 300 | 
         
            -
             
     | 
| 301 | 
         
            -
             
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
             
     | 
| 304 | 
         
            -
             
     | 
| 305 | 
         
            -
             
     | 
| 306 | 
         
            -
             
     | 
| 
         | 
|
| 307 | 
         | 
| 308 | 
         
             
                total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
         
     | 
| 309 | 
         
             
                print(f"\n--> Model has {total_params:,} parameters.\n")
         
     | 
| 
         @@ -312,27 +357,31 @@ def main(data_files: List[str], yaml_file_path: str, checkpoint: str, output_dir 
     | 
|
| 312 | 
         | 
| 313 | 
         
             
                state_dict = torch.load(checkpoint, map_location=device)
         
     | 
| 314 | 
         
             
                # discard fixed pos_embedding weight
         
     | 
| 315 | 
         
            -
                del state_dict[ 
     | 
| 316 | 
         
            -
                del state_dict[ 
     | 
| 317 | 
         
             
                model.load_state_dict(state_dict, strict=False)
         
     | 
| 318 | 
         
             
                print(f"Loaded checkpoint from {checkpoint}")
         
     | 
| 319 | 
         | 
| 320 | 
         
             
                # Running model --------------------------------------------------------------------------------
         
     | 
| 321 | 
         | 
| 322 | 
         
             
                model.eval()
         
     | 
| 323 | 
         
            -
                channels = [bands.index(b) for b in [ 
     | 
| 324 | 
         | 
| 325 | 
         
             
                # Reflect pad if not divisible by img_size
         
     | 
| 326 | 
         
             
                original_h, original_w = input_data.shape[-2:]
         
     | 
| 327 | 
         
             
                pad_h = img_size - (original_h % img_size)
         
     | 
| 328 | 
         
             
                pad_w = img_size - (original_w % img_size)
         
     | 
| 329 | 
         
            -
                input_data = np.pad( 
     | 
| 
         | 
|
| 
         | 
|
| 330 | 
         | 
| 331 | 
         
             
                # Build sliding window
         
     | 
| 332 | 
         
            -
                batch = torch.tensor(input_data, device= 
     | 
| 333 | 
         
             
                windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
         
     | 
| 334 | 
         
             
                h1, w1 = windows.shape[3:5]
         
     | 
| 335 | 
         
            -
                windows = rearrange( 
     | 
| 
         | 
|
| 
         | 
|
| 336 | 
         | 
| 337 | 
         
             
                # Split into batches if number of windows > batch_size
         
     | 
| 338 | 
         
             
                num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
         
     | 
| 
         @@ -350,10 +399,28 @@ def main(data_files: List[str], yaml_file_path: str, checkpoint: str, output_dir 
     | 
|
| 350 | 
         
             
                mask_imgs = torch.concat(mask_imgs, dim=0)
         
     | 
| 351 | 
         | 
| 352 | 
         
             
                # Build images from patches
         
     | 
| 353 | 
         
            -
                rec_imgs = rearrange( 
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
             
     | 
| 356 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 357 | 
         | 
| 358 | 
         
             
                # Cut padded images back to original size
         
     | 
| 359 | 
         
             
                rec_imgs_full = rec_imgs[..., :original_h, :original_w]
         
     | 
| 
         @@ -363,37 +430,88 @@ def main(data_files: List[str], yaml_file_path: str, checkpoint: str, output_dir 
     | 
|
| 363 | 
         
             
                # Build output images
         
     | 
| 364 | 
         
             
                if rgb_outputs:
         
     | 
| 365 | 
         
             
                    for d in meta_data:
         
     | 
| 366 | 
         
            -
                        d.update(count=3, dtype= 
     | 
| 367 | 
         
            -
             
     | 
| 368 | 
         
            -
                    save_rgb_imgs( 
     | 
| 369 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 370 | 
         
             
                else:
         
     | 
| 371 | 
         
             
                    for d in meta_data:
         
     | 
| 372 | 
         
            -
                        d.update(compress= 
     | 
| 373 | 
         | 
| 374 | 
         
            -
                    save_imgs( 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 375 | 
         | 
| 376 | 
         
             
                print("Done!")
         
     | 
| 377 | 
         | 
| 378 | 
         | 
| 379 | 
         
             
            if __name__ == "__main__":
         
     | 
| 380 | 
         
            -
                parser = argparse.ArgumentParser( 
     | 
| 381 | 
         
            -
             
     | 
| 382 | 
         
            -
                parser.add_argument( 
     | 
| 383 | 
         
            -
             
     | 
| 384 | 
         
            -
             
     | 
| 385 | 
         
            -
             
     | 
| 386 | 
         
            -
             
     | 
| 387 | 
         
            -
             
     | 
| 388 | 
         
            -
                 
     | 
| 389 | 
         
            -
             
     | 
| 390 | 
         
            -
             
     | 
| 391 | 
         
            -
             
     | 
| 392 | 
         
            -
             
     | 
| 393 | 
         
            -
             
     | 
| 394 | 
         
            -
             
     | 
| 395 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 396 | 
         
             
                args = parser.parse_args()
         
     | 
| 397 | 
         | 
| 398 | 
         
             
                main(**vars(args))
         
     | 
| 399 | 
         
            -
             
     | 
| 
         | 
|
| 1 | 
         
             
            import argparse
         
     | 
| 2 | 
         
             
            import functools
         
     | 
| 3 | 
         
             
            import os
         
     | 
| 4 | 
         
            +
            from typing import List, Union
         
     | 
| 5 | 
         | 
| 6 | 
         
             
            import numpy as np
         
     | 
| 7 | 
         
             
            import rasterio
         
     | 
| 
         | 
|
| 17 | 
         | 
| 18 | 
         | 
| 19 | 
         
             
            def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
         
     | 
| 20 | 
         
            +
                """Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
         
     | 
| 21 | 
         
             
                    original range using *data_mean* and *data_std* and then lowest and highest percentiles are
         
     | 
| 22 | 
         
             
                    removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
         
     | 
| 23 | 
         | 
| 
         | 
|
| 65 | 
         | 
| 66 | 
         | 
| 67 | 
         
             
            def read_geotiff(file_path: str):
         
     | 
| 68 | 
         
            +
                """Read all bands from *file_path* and return image + meta info.
         
     | 
| 69 | 
         | 
| 70 | 
         
             
                Args:
         
     | 
| 71 | 
         
             
                    file_path: path to image file.
         
     | 
| 
         | 
|
| 83 | 
         | 
| 84 | 
         | 
| 85 | 
         
             
            def save_geotiff(image, output_path: str, meta: dict):
         
     | 
| 86 | 
         
            +
                """Save multi-band image in Geotiff file.
         
     | 
| 87 | 
         | 
| 88 | 
         
             
                Args:
         
     | 
| 89 | 
         
             
                    image: np.ndarray with shape (bands, height, width)
         
     | 
| 
         | 
|
| 99 | 
         | 
| 100 | 
         | 
| 101 | 
         
             
            def _convert_np_uint8(float_image: torch.Tensor):
         
     | 
| 
         | 
|
| 102 | 
         
             
                image = float_image.numpy() * 255.0
         
     | 
| 103 | 
         
             
                image = image.astype(dtype=np.uint8)
         
     | 
| 104 | 
         | 
| 105 | 
         
             
                return image
         
     | 
| 106 | 
         | 
| 107 | 
         | 
| 108 | 
         
            +
            def load_example(
         
     | 
| 109 | 
         
            +
                file_paths: List[str],
         
     | 
| 110 | 
         
            +
                mean: List[float],
         
     | 
| 111 | 
         
            +
                std: List[float],
         
     | 
| 112 | 
         
            +
                indices: Union[list[int], None] = None,
         
     | 
| 113 | 
         
            +
            ):
         
     | 
| 114 | 
         
            +
                """Build an input example by loading images in *file_paths*.
         
     | 
| 115 | 
         | 
| 116 | 
         
             
                Args:
         
     | 
| 117 | 
         
             
                    file_paths: list of file paths .
         
     | 
| 
         | 
|
| 130 | 
         
             
                    img, meta = read_geotiff(file)
         
     | 
| 131 | 
         | 
| 132 | 
         
             
                    # Rescaling (don't normalize on nodata)
         
     | 
| 133 | 
         
            +
                    img = np.moveaxis(img, 0, -1)  # channels last for rescaling
         
     | 
| 134 | 
         
            +
                    if indices is not None:
         
     | 
| 135 | 
         
            +
                        img = img[..., indices]
         
     | 
| 136 | 
         
             
                    img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
         
     | 
| 137 | 
         | 
| 138 | 
         
             
                    imgs.append(img)
         
     | 
| 139 | 
         
             
                    metas.append(meta)
         
     | 
| 140 | 
         | 
| 141 | 
         
            +
                imgs = np.stack(imgs, axis=0)  # num_frames, H, W, C
         
     | 
| 142 | 
         
            +
                imgs = np.moveaxis(imgs, -1, 0).astype("float32")  # C, num_frames, H, W
         
     | 
| 143 | 
         
             
                imgs = np.expand_dims(imgs, axis=0)  # add batch dim
         
     | 
| 144 | 
         | 
| 145 | 
         
             
                return imgs, metas
         
     | 
| 146 | 
         | 
| 147 | 
         | 
| 148 | 
         
            +
            def run_model(
         
     | 
| 149 | 
         
            +
                model: torch.nn.Module,
         
     | 
| 150 | 
         
            +
                input_data: torch.Tensor,
         
     | 
| 151 | 
         
            +
                mask_ratio: float,
         
     | 
| 152 | 
         
            +
                device: torch.device,
         
     | 
| 153 | 
         
            +
            ):
         
     | 
| 154 | 
         
            +
                """Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
         
     | 
| 155 | 
         | 
| 156 | 
         
             
                Args:
         
     | 
| 157 | 
         
             
                    model: MAE model to run.
         
     | 
| 
         | 
|
| 169 | 
         
             
                    _, pred, mask = model(x, mask_ratio)
         
     | 
| 170 | 
         | 
| 171 | 
         
             
                # Create mask and prediction images (un-patchify)
         
     | 
| 172 | 
         
            +
                mask_img = (
         
     | 
| 173 | 
         
            +
                    model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
         
     | 
| 174 | 
         
            +
                )
         
     | 
| 175 | 
         
             
                pred_img = model.unpatchify(pred).detach().cpu()
         
     | 
| 176 | 
         | 
| 177 | 
         
             
                # Mix visible and predicted patches
         
     | 
| 178 | 
         
             
                rec_img = input_data.clone()
         
     | 
| 179 | 
         
            +
                rec_img[mask_img == 1] = pred_img[
         
     | 
| 180 | 
         
            +
                    mask_img == 1
         
     | 
| 181 | 
         
            +
                ]  # binary mask: 0 is keep, 1 is remove
         
     | 
| 182 | 
         | 
| 183 | 
         
             
                # Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
         
     | 
| 184 | 
         
             
                mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
         
     | 
| 
         | 
|
| 186 | 
         
             
                return rec_img, mask_img
         
     | 
| 187 | 
         | 
| 188 | 
         | 
| 189 | 
         
            +
            def save_rgb_imgs(
         
     | 
| 190 | 
         
            +
                input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data
         
     | 
| 191 | 
         
            +
            ):
         
     | 
| 192 | 
         
            +
                """Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
         
     | 
| 193 | 
         | 
| 194 | 
         
             
                Args:
         
     | 
| 195 | 
         
             
                    input_img: input torch.Tensor with shape (C, T, H, W).
         
     | 
| 
         | 
|
| 203 | 
         
             
                """
         
     | 
| 204 | 
         | 
| 205 | 
         
             
                for t in range(input_img.shape[1]):
         
     | 
| 206 | 
         
            +
                    rgb_orig, rgb_pred = process_channel_group(
         
     | 
| 207 | 
         
            +
                        orig_img=input_img[:, t, :, :],
         
     | 
| 208 | 
         
            +
                        new_img=rec_img[:, t, :, :],
         
     | 
| 209 | 
         
            +
                        channels=channels,
         
     | 
| 210 | 
         
            +
                        data_mean=mean,
         
     | 
| 211 | 
         
            +
                        data_std=std,
         
     | 
| 212 | 
         
            +
                    )
         
     | 
| 213 | 
         | 
| 214 | 
         
             
                    rgb_mask = mask_img[channels, t, :, :] * rgb_orig
         
     | 
| 215 | 
         | 
| 216 | 
         
             
                    # Saving images
         
     | 
| 217 | 
         | 
| 218 | 
         
            +
                    save_geotiff(
         
     | 
| 219 | 
         
            +
                        image=_convert_np_uint8(rgb_orig),
         
     | 
| 220 | 
         
            +
                        output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
         
     | 
| 221 | 
         
            +
                        meta=meta_data[t],
         
     | 
| 222 | 
         
            +
                    )
         
     | 
| 223 | 
         | 
| 224 | 
         
            +
                    save_geotiff(
         
     | 
| 225 | 
         
            +
                        image=_convert_np_uint8(rgb_pred),
         
     | 
| 226 | 
         
            +
                        output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
         
     | 
| 227 | 
         
            +
                        meta=meta_data[t],
         
     | 
| 228 | 
         
            +
                    )
         
     | 
| 229 | 
         | 
| 230 | 
         
            +
                    save_geotiff(
         
     | 
| 231 | 
         
            +
                        image=_convert_np_uint8(rgb_mask),
         
     | 
| 232 | 
         
            +
                        output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
         
     | 
| 233 | 
         
            +
                        meta=meta_data[t],
         
     | 
| 234 | 
         
            +
                    )
         
     | 
| 235 | 
         | 
| 236 | 
         | 
| 237 | 
         
             
            def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
         
     | 
| 238 | 
         
            +
                """Wrapper function to save Geotiff images (reconstructed, mask) per timestamp.
         
     | 
| 239 | 
         | 
| 240 | 
         
             
                Args:
         
     | 
| 241 | 
         
             
                    rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
         
     | 
| 
         | 
|
| 250 | 
         
             
                std = torch.tensor(np.asarray(std)[:, None, None])
         
     | 
| 251 | 
         | 
| 252 | 
         
             
                for t in range(rec_img.shape[1]):
         
     | 
| 
         | 
|
| 253 | 
         
             
                    # Back to original data range
         
     | 
| 254 | 
         
             
                    rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)
         
     | 
| 255 | 
         | 
| 
         | 
|
| 257 | 
         | 
| 258 | 
         
             
                    # Saving images
         
     | 
| 259 | 
         | 
| 260 | 
         
            +
                    save_geotiff(
         
     | 
| 261 | 
         
            +
                        image=rec_img_t,
         
     | 
| 262 | 
         
            +
                        output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"),
         
     | 
| 263 | 
         
            +
                        meta=meta_data[t],
         
     | 
| 264 | 
         
            +
                    )
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                    save_geotiff(
         
     | 
| 267 | 
         
            +
                        image=mask_img_t,
         
     | 
| 268 | 
         
            +
                        output_path=os.path.join(output_dir, f"mask_t{t}.tiff"),
         
     | 
| 269 | 
         
            +
                        meta=meta_data[t],
         
     | 
| 270 | 
         
            +
                    )
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            def main(
         
     | 
| 274 | 
         
            +
                data_files: List[str],
         
     | 
| 275 | 
         
            +
                yaml_file_path: str,
         
     | 
| 276 | 
         
            +
                checkpoint: str,
         
     | 
| 277 | 
         
            +
                output_dir: str,
         
     | 
| 278 | 
         
            +
                rgb_outputs: bool,
         
     | 
| 279 | 
         
            +
                img_size: int,
         
     | 
| 280 | 
         
            +
                mask_ratio: float = None,
         
     | 
| 281 | 
         
            +
                input_indices: list[int] = None,
         
     | 
| 282 | 
         
            +
            ):
         
     | 
| 283 | 
         
             
                os.makedirs(output_dir, exist_ok=True)
         
     | 
| 284 | 
         | 
| 285 | 
         
             
                # Get parameters --------
         
     | 
| 286 | 
         | 
| 287 | 
         
            +
                with open(yaml_file_path, "r") as f:
         
     | 
| 288 | 
         
             
                    params = yaml.safe_load(f)
         
     | 
| 289 | 
         | 
| 290 | 
         
             
                # data related
         
     | 
| 291 | 
         
            +
                train_params = params["train_params"]
         
     | 
| 292 | 
         
             
                num_frames = len(data_files)
         
     | 
| 293 | 
         
            +
                bands = train_params["bands"]
         
     | 
| 294 | 
         
            +
                mean = train_params["data_mean"]
         
     | 
| 295 | 
         
            +
                std = train_params["data_std"]
         
     | 
| 
         | 
|
| 296 | 
         | 
| 297 | 
         
             
                # model related
         
     | 
| 298 | 
         
            +
                model_params = params["model_args"]
         
     | 
| 299 | 
         
            +
                img_size = model_params["img_size"] if img_size is None else img_size
         
     | 
| 300 | 
         
            +
                depth = model_params["depth"]
         
     | 
| 301 | 
         
            +
                patch_size = model_params["patch_size"]
         
     | 
| 302 | 
         
            +
                embed_dim = model_params["embed_dim"]
         
     | 
| 303 | 
         
            +
                num_heads = model_params["num_heads"]
         
     | 
| 304 | 
         
            +
                tubelet_size = model_params["tubelet_size"]
         
     | 
| 305 | 
         
            +
                decoder_embed_dim = model_params["decoder_embed_dim"]
         
     | 
| 306 | 
         
            +
                decoder_num_heads = model_params["decoder_num_heads"]
         
     | 
| 307 | 
         
            +
                decoder_depth = model_params["decoder_depth"]
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                batch_size = 1
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                mask_ratio = train_params["mask_ratio"] if mask_ratio is None else mask_ratio
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                print(
         
     | 
| 314 | 
         
            +
                    f"\nTreating {len(data_files)} files as {len(data_files)} time steps from the same location\n"
         
     | 
| 315 | 
         
            +
                )
         
     | 
| 316 | 
         
             
                if len(data_files) != 3:
         
     | 
| 317 | 
         
            +
                    print(
         
     | 
| 318 | 
         
            +
                        "The original model was trained for 3 time steps (expecting 3 files). \nResults with different numbers of timesteps may vary"
         
     | 
| 319 | 
         
            +
                    )
         
     | 
| 320 | 
         | 
| 321 | 
         
             
                if torch.cuda.is_available():
         
     | 
| 322 | 
         
            +
                    device = torch.device("cuda")
         
     | 
| 323 | 
         
             
                else:
         
     | 
| 324 | 
         
            +
                    device = torch.device("cpu")
         
     | 
| 325 | 
         | 
| 326 | 
         
             
                print(f"Using {device} device.\n")
         
     | 
| 327 | 
         | 
| 328 | 
         
             
                # Loading data ---------------------------------------------------------------------------------
         
     | 
| 329 | 
         | 
| 330 | 
         
            +
                input_data, meta_data = load_example(
         
     | 
| 331 | 
         
            +
                    file_paths=data_files, indices=input_indices, mean=mean, std=std
         
     | 
| 332 | 
         
            +
                )
         
     | 
| 333 | 
         | 
| 334 | 
         
             
                # Create model and load checkpoint -------------------------------------------------------------
         
     | 
| 335 | 
         | 
| 336 | 
         
             
                model = MaskedAutoencoderViT(
         
     | 
| 337 | 
         
            +
                    img_size=img_size,
         
     | 
| 338 | 
         
            +
                    patch_size=patch_size,
         
     | 
| 339 | 
         
            +
                    num_frames=num_frames,
         
     | 
| 340 | 
         
            +
                    tubelet_size=tubelet_size,
         
     | 
| 341 | 
         
            +
                    in_chans=len(bands),
         
     | 
| 342 | 
         
            +
                    embed_dim=embed_dim,
         
     | 
| 343 | 
         
            +
                    depth=depth,
         
     | 
| 344 | 
         
            +
                    num_heads=num_heads,
         
     | 
| 345 | 
         
            +
                    decoder_embed_dim=decoder_embed_dim,
         
     | 
| 346 | 
         
            +
                    decoder_depth=decoder_depth,
         
     | 
| 347 | 
         
            +
                    decoder_num_heads=decoder_num_heads,
         
     | 
| 348 | 
         
            +
                    mlp_ratio=4.0,
         
     | 
| 349 | 
         
            +
                    norm_layer=functools.partial(torch.nn.LayerNorm, eps=1e-6),
         
     | 
| 350 | 
         
            +
                    norm_pix_loss=False,
         
     | 
| 351 | 
         
            +
                )
         
     | 
| 352 | 
         | 
| 353 | 
         
             
                total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
         
     | 
| 354 | 
         
             
                print(f"\n--> Model has {total_params:,} parameters.\n")
         
     | 
| 
         | 
|
| 357 | 
         | 
| 358 | 
         
             
                state_dict = torch.load(checkpoint, map_location=device)
         
     | 
| 359 | 
         
             
                # discard fixed pos_embedding weight
         
     | 
| 360 | 
         
            +
                del state_dict["pos_embed"]
         
     | 
| 361 | 
         
            +
                del state_dict["decoder_pos_embed"]
         
     | 
| 362 | 
         
             
                model.load_state_dict(state_dict, strict=False)
         
     | 
| 363 | 
         
             
                print(f"Loaded checkpoint from {checkpoint}")
         
     | 
| 364 | 
         | 
| 365 | 
         
             
                # Running model --------------------------------------------------------------------------------
         
     | 
| 366 | 
         | 
| 367 | 
         
             
                model.eval()
         
     | 
| 368 | 
         
            +
                channels = [bands.index(b) for b in ["B04", "B03", "B02"]]  # BGR -> RGB
         
     | 
| 369 | 
         | 
| 370 | 
         
             
                # Reflect pad if not divisible by img_size
         
     | 
| 371 | 
         
             
                original_h, original_w = input_data.shape[-2:]
         
     | 
| 372 | 
         
             
                pad_h = img_size - (original_h % img_size)
         
     | 
| 373 | 
         
             
                pad_w = img_size - (original_w % img_size)
         
     | 
| 374 | 
         
            +
                input_data = np.pad(
         
     | 
| 375 | 
         
            +
                    input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
         
     | 
| 376 | 
         
            +
                )
         
     | 
| 377 | 
         | 
| 378 | 
         
             
                # Build sliding window
         
     | 
| 379 | 
         
            +
                batch = torch.tensor(input_data, device="cpu")
         
     | 
| 380 | 
         
             
                windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
         
     | 
| 381 | 
         
             
                h1, w1 = windows.shape[3:5]
         
     | 
| 382 | 
         
            +
                windows = rearrange(
         
     | 
| 383 | 
         
            +
                    windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
         
     | 
| 384 | 
         
            +
                )
         
     | 
| 385 | 
         | 
| 386 | 
         
             
                # Split into batches if number of windows > batch_size
         
     | 
| 387 | 
         
             
                num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
         
     | 
| 
         | 
|
| 399 | 
         
             
                mask_imgs = torch.concat(mask_imgs, dim=0)
         
     | 
| 400 | 
         | 
| 401 | 
         
             
                # Build images from patches
         
     | 
| 402 | 
         
            +
                rec_imgs = rearrange(
         
     | 
| 403 | 
         
            +
                    rec_imgs,
         
     | 
| 404 | 
         
            +
                    "(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
         
     | 
| 405 | 
         
            +
                    h=img_size,
         
     | 
| 406 | 
         
            +
                    w=img_size,
         
     | 
| 407 | 
         
            +
                    b=1,
         
     | 
| 408 | 
         
            +
                    c=len(bands),
         
     | 
| 409 | 
         
            +
                    t=num_frames,
         
     | 
| 410 | 
         
            +
                    h1=h1,
         
     | 
| 411 | 
         
            +
                    w1=w1,
         
     | 
| 412 | 
         
            +
                )
         
     | 
| 413 | 
         
            +
                mask_imgs = rearrange(
         
     | 
| 414 | 
         
            +
                    mask_imgs,
         
     | 
| 415 | 
         
            +
                    "(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
         
     | 
| 416 | 
         
            +
                    h=img_size,
         
     | 
| 417 | 
         
            +
                    w=img_size,
         
     | 
| 418 | 
         
            +
                    b=1,
         
     | 
| 419 | 
         
            +
                    c=len(bands),
         
     | 
| 420 | 
         
            +
                    t=num_frames,
         
     | 
| 421 | 
         
            +
                    h1=h1,
         
     | 
| 422 | 
         
            +
                    w1=w1,
         
     | 
| 423 | 
         
            +
                )
         
     | 
| 424 | 
         | 
| 425 | 
         
             
                # Cut padded images back to original size
         
     | 
| 426 | 
         
             
                rec_imgs_full = rec_imgs[..., :original_h, :original_w]
         
     | 
| 
         | 
|
| 430 | 
         
             
                # Build output images
         
     | 
| 431 | 
         
             
                if rgb_outputs:
         
     | 
| 432 | 
         
             
                    for d in meta_data:
         
     | 
| 433 | 
         
            +
                        d.update(count=3, dtype="uint8", compress="lzw", nodata=0)
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                    save_rgb_imgs(
         
     | 
| 436 | 
         
            +
                        batch_full[0, ...],
         
     | 
| 437 | 
         
            +
                        rec_imgs_full[0, ...],
         
     | 
| 438 | 
         
            +
                        mask_imgs_full[0, ...],
         
     | 
| 439 | 
         
            +
                        channels,
         
     | 
| 440 | 
         
            +
                        mean,
         
     | 
| 441 | 
         
            +
                        std,
         
     | 
| 442 | 
         
            +
                        output_dir,
         
     | 
| 443 | 
         
            +
                        meta_data,
         
     | 
| 444 | 
         
            +
                    )
         
     | 
| 445 | 
         
             
                else:
         
     | 
| 446 | 
         
             
                    for d in meta_data:
         
     | 
| 447 | 
         
            +
                        d.update(compress="lzw", nodata=0)
         
     | 
| 448 | 
         | 
| 449 | 
         
            +
                    save_imgs(
         
     | 
| 450 | 
         
            +
                        rec_imgs_full[0, ...],
         
     | 
| 451 | 
         
            +
                        mask_imgs_full[0, ...],
         
     | 
| 452 | 
         
            +
                        mean,
         
     | 
| 453 | 
         
            +
                        std,
         
     | 
| 454 | 
         
            +
                        output_dir,
         
     | 
| 455 | 
         
            +
                        meta_data,
         
     | 
| 456 | 
         
            +
                    )
         
     | 
| 457 | 
         | 
| 458 | 
         
             
                print("Done!")
         
     | 
| 459 | 
         | 
| 460 | 
         | 
| 461 | 
         
             
            if __name__ == "__main__":
         
     | 
| 462 | 
         
            +
                parser = argparse.ArgumentParser("MAE run inference", add_help=False)
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                parser.add_argument(
         
     | 
| 465 | 
         
            +
                    "--data_files",
         
     | 
| 466 | 
         
            +
                    required=True,
         
     | 
| 467 | 
         
            +
                    type=str,
         
     | 
| 468 | 
         
            +
                    nargs="+",
         
     | 
| 469 | 
         
            +
                    help="Path to the data files. Assumes multi-band files.",
         
     | 
| 470 | 
         
            +
                )
         
     | 
| 471 | 
         
            +
                parser.add_argument(
         
     | 
| 472 | 
         
            +
                    "--yaml_file_path",
         
     | 
| 473 | 
         
            +
                    type=str,
         
     | 
| 474 | 
         
            +
                    required=True,
         
     | 
| 475 | 
         
            +
                    help="Path to yaml file containing model training parameters.",
         
     | 
| 476 | 
         
            +
                )
         
     | 
| 477 | 
         
            +
                parser.add_argument(
         
     | 
| 478 | 
         
            +
                    "--checkpoint",
         
     | 
| 479 | 
         
            +
                    required=True,
         
     | 
| 480 | 
         
            +
                    type=str,
         
     | 
| 481 | 
         
            +
                    help="Path to a checkpoint file to load from.",
         
     | 
| 482 | 
         
            +
                )
         
     | 
| 483 | 
         
            +
                parser.add_argument(
         
     | 
| 484 | 
         
            +
                    "--output_dir",
         
     | 
| 485 | 
         
            +
                    required=True,
         
     | 
| 486 | 
         
            +
                    type=str,
         
     | 
| 487 | 
         
            +
                    help="Path to the directory where to save outputs.",
         
     | 
| 488 | 
         
            +
                )
         
     | 
| 489 | 
         
            +
                parser.add_argument(
         
     | 
| 490 | 
         
            +
                    "--mask_ratio",
         
     | 
| 491 | 
         
            +
                    default=None,
         
     | 
| 492 | 
         
            +
                    type=float,
         
     | 
| 493 | 
         
            +
                    help="Masking ratio (percentage of removed patches). "
         
     | 
| 494 | 
         
            +
                    "If None (default) use same value used for pretraining.",
         
     | 
| 495 | 
         
            +
                )
         
     | 
| 496 | 
         
            +
                parser.add_argument(
         
     | 
| 497 | 
         
            +
                    "--img_size",
         
     | 
| 498 | 
         
            +
                    default=224,
         
     | 
| 499 | 
         
            +
                    type=int,
         
     | 
| 500 | 
         
            +
                    help="Image size to be used with model. Defaults to 224",
         
     | 
| 501 | 
         
            +
                )
         
     | 
| 502 | 
         
            +
                parser.add_argument(
         
     | 
| 503 | 
         
            +
                    "--input_indices",
         
     | 
| 504 | 
         
            +
                    default=None,
         
     | 
| 505 | 
         
            +
                    type=int,
         
     | 
| 506 | 
         
            +
                    nargs="+",
         
     | 
| 507 | 
         
            +
                    help="0-based indices of channels to be selected from the input. By default takes all.",
         
     | 
| 508 | 
         
            +
                )
         
     | 
| 509 | 
         
            +
                parser.add_argument(
         
     | 
| 510 | 
         
            +
                    "--rgb_outputs",
         
     | 
| 511 | 
         
            +
                    action="store_true",
         
     | 
| 512 | 
         
            +
                    help="If present, output files will only contain RGB channels. "
         
     | 
| 513 | 
         
            +
                    "Otherwise, all bands will be saved.",
         
     | 
| 514 | 
         
            +
                )
         
     | 
| 515 | 
         
             
                args = parser.parse_args()
         
     | 
| 516 | 
         | 
| 517 | 
         
             
                main(**vars(args))
         
     | 
| 
         | 
    	
        README.md
    CHANGED
    
    | 
         @@ -36,9 +36,11 @@ The model follows the [original MAE repo](https://github.com/facebookresearch/ma 
     | 
|
| 36 | 
         
             
            There is an inference script (`Prithvi_run_inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different time steps(see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units. There is also a **demo** that leverages the same code [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-demo).
         
     | 
| 37 | 
         | 
| 38 | 
         
             
            ```
         
     | 
| 39 | 
         
            -
            python Prithvi_run_inference.py --data_files t1.tif t2.tif t3.tif --yaml_file_path /path/to/yaml/Prithvi_100.yaml --checkpoint /path/to/checkpoint/Prithvi_100.pth --output_dir /path/to/out/dir/ --mask_ratio 0.5
         
     | 
| 40 | 
         
             
            ```
         
     | 
| 41 | 
         | 
| 
         | 
|
| 
         | 
|
| 42 | 
         
             
            ### Finetuning examples
         
     | 
| 43 | 
         
             
            Examples of finetuning the model for image segmentation using the mmsegmentation library are available through Hugging Face (e.g. [burn scars segmentation](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-burn-scar), [flood mapping](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11), and [multi temporal crop classification](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification)), with the code used for the experiments available on [github](https://github.com/NASA-IMPACT/hls-foundation-os/tree/main/fine-tuning-examples). This also contains instructions to finetune the model for flood detection on the popular open access [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11).
         
     | 
| 44 | 
         | 
| 
         | 
|
| 36 | 
         
             
            There is an inference script (`Prithvi_run_inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different time steps(see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units. There is also a **demo** that leverages the same code [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-demo).
         
     | 
| 37 | 
         | 
| 38 | 
         
             
            ```
         
     | 
| 39 | 
         
            +
            python Prithvi_run_inference.py --data_files t1.tif t2.tif t3.tif --yaml_file_path /path/to/yaml/Prithvi_100.yaml --checkpoint /path/to/checkpoint/Prithvi_100.pth --output_dir /path/to/out/dir/ --input_indices <space separated 0-based indices of channels to select from input> --mask_ratio 0.5 --img_size <length of one side of square input shape>
         
     | 
| 40 | 
         
             
            ```
         
     | 
| 41 | 
         | 
| 42 | 
         
            +
            This demo is a starting point that can be used as a starting point to generalize to different input shapes / types.
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
             
            ### Finetuning examples
         
     | 
| 45 | 
         
             
            Examples of finetuning the model for image segmentation using the mmsegmentation library are available through Hugging Face (e.g. [burn scars segmentation](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-burn-scar), [flood mapping](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11), and [multi temporal crop classification](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification)), with the code used for the experiments available on [github](https://github.com/NASA-IMPACT/hls-foundation-os/tree/main/fine-tuning-examples). This also contains instructions to finetune the model for flood detection on the popular open access [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11).
         
     | 
| 46 | 
         |