Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,136 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
[
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- ct
|
5 |
+
- computed_tomography
|
6 |
+
- crop
|
7 |
+
- dicom
|
8 |
+
- radiology
|
9 |
+
license: apache-2.0
|
10 |
+
base_model:
|
11 |
+
- timm/mobilenetv3_small_100.lamb_in1k
|
12 |
+
pipeline_tag: object-detection
|
13 |
---
|
14 |
|
15 |
+
This model crops the foreground from the background in CT slices. It is a lightweight `mobilenetv3_small_100`
|
16 |
+
model trained on CT examinations from the [public TotalSegmentator dataset](https://zenodo.org/records/10047292), version.2.0.1.
|
17 |
+
|
18 |
+
The following function was used to generate masks for each CT:
|
19 |
+
```
|
20 |
+
import nibabel as nib
|
21 |
+
import numpy as np
|
22 |
+
from scipy.ndimage import binary_closing, binary_fill_holes, minimum_filter
|
23 |
+
from skimage.measure import label
|
24 |
+
|
25 |
+
def generate_mask(array):
|
26 |
+
mask = (array > 0).astype("uint8")
|
27 |
+
mask_label = label(mask)
|
28 |
+
labels, counts = np.unique(mask_label, return_counts=True)
|
29 |
+
labels, counts = labels[1:], counts[1:]
|
30 |
+
max_label = labels[np.argmax(counts)]
|
31 |
+
mask = mask_label == max_label
|
32 |
+
mask = np.stack([
|
33 |
+
binary_fill_holes(binary_closing(mask[:, :, i]))
|
34 |
+
for i in range(mask.shape[2])
|
35 |
+
], axis=2).astype("uint8")
|
36 |
+
mask = np.stack([
|
37 |
+
minimum_filter(mask[:, :, i], size=3)
|
38 |
+
for i in range(mask.shape[2])
|
39 |
+
], axis=2)
|
40 |
+
return mask
|
41 |
+
|
42 |
+
array = nib.load("ct.nii.gz").get_fdata()
|
43 |
+
# apply soft tissue window
|
44 |
+
array = apply_ct_window(array, window_level=50, window_width=400)
|
45 |
+
mask = generate_mask(array)
|
46 |
+
```
|
47 |
+
|
48 |
+
Bounding box coordinates were generated from the masks for individual slices.
|
49 |
+
The model was then trained to predict normalized (0-1) `xwyh` coordinates, given an individual CT slice.
|
50 |
+
If the mask was empty, the coordinates were set to all zero.
|
51 |
+
Images were converted from Hounsfield units (HU) to 4 CT windows:
|
52 |
+
1. Soft tissue (level=50, width=400)
|
53 |
+
2. Brain (level=40, width=80)
|
54 |
+
3. Lung (level=-600, width=1500)
|
55 |
+
4. Bone (level=400, width=1800)
|
56 |
+
|
57 |
+
During training, random combinations of channels were selected. If more than 1 channel was selected,
|
58 |
+
the images were averaged channel-wise to create a single-channel output. Strong data augmentation was also applied.
|
59 |
+
Thus, this model should be robust to different CT windows and combinations thereof.
|
60 |
+
|
61 |
+
Example usage below:
|
62 |
+
```
|
63 |
+
import cv2
|
64 |
+
import torch
|
65 |
+
from transformers import AutoModel
|
66 |
+
|
67 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
68 |
+
cropper = AutoModel.from_pretrained("ianpan/ct-crop", trust_remote_code=True).eval().to(device)
|
69 |
+
|
70 |
+
# single image
|
71 |
+
img = cv2.imread("ct_slice.png", cv2.IMREAD_GRAYSCALE)
|
72 |
+
cropped_img = cropper.crop(img, mode="2d", device=device, raw_hu=False, add_buffer=None)
|
73 |
+
|
74 |
+
# expand all 4 sides by 2.5% each
|
75 |
+
cropped_img = cropper.crop(img, mode="2d", device=device, raw_hu=False, add_buffer=0.025)
|
76 |
+
|
77 |
+
# expand box height by 2.5% in each direction
|
78 |
+
# and box width by 5% in each direction
|
79 |
+
buffer = (0.05, 0.025)
|
80 |
+
cropped_img = cropper.crop(img, mode="2d", device=device, raw_hu=False, add_buffer=buffer)
|
81 |
+
|
82 |
+
# stack of images
|
83 |
+
img_list = ["ct_slice_1.png", "ct_slice_2.png", ...]
|
84 |
+
stack = np.stack([cv2.imread(img, cv2.IMREAD_GRAYSCALE) for img in img_list], axis=0)
|
85 |
+
cropped_stack = cropper.crop(img, mode="3d", device=device, raw_hu=False, add_buffer=None)
|
86 |
+
```
|
87 |
+
|
88 |
+
You can also get the coordinates directly and do the cropping yourself.
|
89 |
+
You must separately preprocess the input. Example below:
|
90 |
+
```
|
91 |
+
# single image
|
92 |
+
img0 = cv2.imread("ct_slice.png", cv2.IMREAD_GRAYSCALE)
|
93 |
+
img_shapes = torch.tensor([_.shape[:2] for _ in [img0]]).to(device)
|
94 |
+
img = cropper.preprocess(img0, mode="2d")
|
95 |
+
# if multi-channel, need to convert from channels-last -> channels-first
|
96 |
+
img = torch.from_numpy(img).expand(1, 1, -1, -1).float().to(device)
|
97 |
+
with torch.inference_mode():
|
98 |
+
coords = cropper(img, img_shape=img_shapes, add_buffer=None)
|
99 |
+
|
100 |
+
# if you do not provide img_shapes, output will be normalized (0-1) coordinates
|
101 |
+
# otherwise will be scaled to img_shape
|
102 |
+
```
|
103 |
+
|
104 |
+
The model also contains methods to load DICOM images, if you have `pydicom` installed:
|
105 |
+
```
|
106 |
+
img = cropper.load_image_from_dicom(path_to_dicom_file, windows=None)
|
107 |
+
|
108 |
+
# note: RescaleSlope and RescaleIntercept already applied in the method
|
109 |
+
# apply CT window
|
110 |
+
brain_window = (40, 80)
|
111 |
+
img = cropper.load_image_from_dicom(path_to_dicom_file, windows=brain_window)
|
112 |
+
|
113 |
+
# or multiple windows
|
114 |
+
soft_tissue_window = (50, 400)
|
115 |
+
img = cropper.load_image_from_dicom(path_to_dicom_file,
|
116 |
+
windows=[brain_window, soft_tissue_window])
|
117 |
+
# each window is a separate channel, img will be channels-last format
|
118 |
+
```
|
119 |
+
|
120 |
+
You can also load a stack of DICOM images from a folder:
|
121 |
+
```
|
122 |
+
dicom_folder = "/path/to/ct/head/images/"
|
123 |
+
|
124 |
+
# dicom_extension is used to filter files, default is ".dcm"
|
125 |
+
# can pass "" if you do not want to filter files
|
126 |
+
# default sort is by ImagePositionPatient using automatically determined
|
127 |
+
# orientation, can also sort by InstanceNumber
|
128 |
+
# can also apply CT windows, as above
|
129 |
+
stack = cropper.load_stack_from_dicom_folder(dicom_folder,
|
130 |
+
windows=None,
|
131 |
+
dicom_extension=".dcm",
|
132 |
+
sort_by_instance_number=False)
|
133 |
+
|
134 |
+
# can input raw Hounsfield units into cropper
|
135 |
+
cropped_stack = cropper.crop(stack, mode="3d", device=device, raw_hu=True)
|
136 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|