--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5528 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1578 | 0.99 | 56 | 2.1203 | 0.55 | | 1.6815 | 2.0 | 113 | 1.6607 | 0.57 | | 1.2921 | 2.99 | 169 | 1.2421 | 0.64 | | 1.0324 | 4.0 | 226 | 1.0260 | 0.7 | | 0.8661 | 4.99 | 282 | 0.8973 | 0.7 | | 0.6192 | 6.0 | 339 | 0.7420 | 0.79 | | 0.5437 | 6.99 | 395 | 0.6951 | 0.8 | | 0.4917 | 8.0 | 452 | 0.6996 | 0.78 | | 0.3868 | 8.99 | 508 | 0.6648 | 0.81 | | 0.3816 | 10.0 | 565 | 0.6584 | 0.79 | | 0.1935 | 10.99 | 621 | 0.6101 | 0.84 | | 0.128 | 12.0 | 678 | 0.5445 | 0.85 | | 0.1144 | 12.99 | 734 | 0.5703 | 0.84 | | 0.0828 | 14.0 | 791 | 0.5632 | 0.83 | | 0.0928 | 14.87 | 840 | 0.5528 | 0.84 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3