File size: 2,186 Bytes
8423a96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ucf101-subset
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0794
- Accuracy: 0.9714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 600
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.1779 | 0.0833 | 50 | 2.0389 | 0.2714 |
| 0.9209 | 1.0833 | 100 | 0.9262 | 0.6857 |
| 0.5527 | 2.0833 | 150 | 0.3633 | 0.9143 |
| 0.2367 | 3.0833 | 200 | 0.4540 | 0.8857 |
| 0.4635 | 4.0833 | 250 | 0.2192 | 0.9429 |
| 0.097 | 5.0833 | 300 | 0.2792 | 0.8714 |
| 0.0128 | 6.0833 | 350 | 0.1230 | 0.9571 |
| 0.0346 | 7.0833 | 400 | 0.0637 | 0.9714 |
| 0.005 | 8.0833 | 450 | 0.0655 | 0.9714 |
| 0.0045 | 9.0833 | 500 | 0.0876 | 0.9714 |
| 0.004 | 10.0833 | 550 | 0.0904 | 0.9714 |
| 0.0041 | 11.0833 | 600 | 0.0794 | 0.9714 |
### Framework versions
- Transformers 4.45.1
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
|