hyacinthum commited on
Commit
639bb58
·
verified ·
1 Parent(s): 63ef06c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -14,4 +14,65 @@ base_model:
14
  tags:
15
  - NeuralWave
16
  - Hackathon
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
 
14
  tags:
15
  - NeuralWave
16
  - Hackathon
17
+ ---
18
+ ## Overview
19
+
20
+ This model serves to enhance the precision and accuracy of personal information detection by utilizing a reduced label set compared to its base model. Through this refinement, it aims to provide superior labeling precision for identifying personal information across multiple languages.
21
+
22
+ ---
23
+
24
+ ## Features
25
+
26
+ - **Improved Precision**: By reducing the label set size from the base model, the model enhances the precision of the labeling procedure, ensuring more reliable identification of sensitive information.
27
+
28
+ - **Model Versions**:
29
+ - **Maximum Accuracy Focus**: This version aims to achieve the highest possible accuracy in the detection process, making it suitable for applications where minimizing errors is crucial.
30
+ - **Maximum Precision Focus**: This variant is designed to maximize the precision of the detection, ideal for scenarios where false positives are particularly undesirable.
31
+
32
+ ---
33
+
34
+ ## Installation
35
+
36
+ To run this model, you will need to install the dependencies:
37
+
38
+ ```bash
39
+ pip install torch transformers safetensors
40
+ ```
41
+
42
+ ---
43
+
44
+ ## Usage
45
+
46
+ Load and run the model using PyTorch and transformers:
47
+
48
+ ```python
49
+ import torch
50
+ from transformers import AutoTokenizer, AutoModel
51
+ from safetensors.torch import load_file
52
+
53
+ # Load the tokenizer
54
+ tokenizer = BertTokenizerFast.from_pretrained("google-bert/bert-base-multilingual-cased")
55
+
56
+ # Load the model
57
+ model = AutoModel.from_pretrained('model-path/miniagent.pt', device_map='auto')
58
+ # Alternatively, for the precision-focused model
59
+ # model = AutoModel.from_pretrained('model-path/miniagent_precision', device_map='auto')
60
+
61
+ # Example input
62
+ text = "Your sensitive information string"
63
+
64
+ # Tokenize and run the model
65
+ inputs = tokenizer(text, return_tensors="pt")
66
+ outputs = model(**inputs)
67
+
68
+ # Process outputs for analysis...
69
+ ```
70
+
71
+ ---
72
+
73
+ ## Evaluation
74
+
75
+ - **Accuracy Model**: Focused on minimizing errors, evaluates to achieve the highest accuracy metrics.
76
+ - **Precision Model**: Designed to minimize false positives, optimizing for precision-driven applications.
77
+
78
  ---