Update handler.py
Browse files- handler.py +52 -52
handler.py
CHANGED
|
@@ -1,52 +1,52 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from diffusers.utils import load_image
|
| 3 |
-
from diffusers import FluxControlNetModel
|
| 4 |
-
from diffusers.pipelines import FluxControlNetPipeline
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import io
|
| 7 |
-
|
| 8 |
-
class CustomHandler:
|
| 9 |
-
def __init__(self, model_dir):
|
| 10 |
-
# Load model and pipeline
|
| 11 |
-
self.controlnet = FluxControlNetModel.from_pretrained(
|
| 12 |
-
model_dir, torch_dtype=torch.bfloat16
|
| 13 |
-
)
|
| 14 |
-
self.pipe = FluxControlNetPipeline.from_pretrained(
|
| 15 |
-
"black-forest-labs/FLUX.1-dev",
|
| 16 |
-
controlnet=self.controlnet,
|
| 17 |
-
torch_dtype=torch.bfloat16
|
| 18 |
-
)
|
| 19 |
-
self.pipe.to("cuda")
|
| 20 |
-
|
| 21 |
-
def preprocess(self, data):
|
| 22 |
-
# Load image from file
|
| 23 |
-
image_file = data.get("control_image", None)
|
| 24 |
-
if not image_file:
|
| 25 |
-
raise ValueError("Missing control_image in input.")
|
| 26 |
-
image = Image.open(image_file)
|
| 27 |
-
w, h = image.size
|
| 28 |
-
# Upscale x4
|
| 29 |
-
return image.resize((w * 4, h * 4))
|
| 30 |
-
|
| 31 |
-
def postprocess(self, output):
|
| 32 |
-
# Save output image to a file-like object
|
| 33 |
-
buffer = io.BytesIO()
|
| 34 |
-
output.save(buffer, format="PNG")
|
| 35 |
-
buffer.seek(0) # Reset buffer pointer
|
| 36 |
-
return buffer
|
| 37 |
-
|
| 38 |
-
def inference(self, data):
|
| 39 |
-
# Preprocess input
|
| 40 |
-
control_image = self.preprocess(data)
|
| 41 |
-
# Generate output
|
| 42 |
-
output_image = self.pipe(
|
| 43 |
-
prompt=data.get("prompt", ""),
|
| 44 |
-
control_image=control_image,
|
| 45 |
-
controlnet_conditioning_scale=0.6,
|
| 46 |
-
num_inference_steps=28,
|
| 47 |
-
guidance_scale=3.5,
|
| 48 |
-
height=control_image.size[1],
|
| 49 |
-
width=control_image.size[0],
|
| 50 |
-
).images[0]
|
| 51 |
-
# Postprocess output
|
| 52 |
-
return self.postprocess(output_image)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers.utils import load_image
|
| 3 |
+
from diffusers import FluxControlNetModel
|
| 4 |
+
from diffusers.pipelines import FluxControlNetPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
class CustomHandler:
|
| 9 |
+
def __init__(self, model_dir="huyai123/Flux.1-dev-Image-Upscaler"):
|
| 10 |
+
# Load model and pipeline
|
| 11 |
+
self.controlnet = FluxControlNetModel.from_pretrained(
|
| 12 |
+
model_dir, torch_dtype=torch.bfloat16
|
| 13 |
+
)
|
| 14 |
+
self.pipe = FluxControlNetPipeline.from_pretrained(
|
| 15 |
+
"black-forest-labs/FLUX.1-dev",
|
| 16 |
+
controlnet=self.controlnet,
|
| 17 |
+
torch_dtype=torch.bfloat16
|
| 18 |
+
)
|
| 19 |
+
self.pipe.to("cuda")
|
| 20 |
+
|
| 21 |
+
def preprocess(self, data):
|
| 22 |
+
# Load image from file
|
| 23 |
+
image_file = data.get("control_image", None)
|
| 24 |
+
if not image_file:
|
| 25 |
+
raise ValueError("Missing control_image in input.")
|
| 26 |
+
image = Image.open(image_file)
|
| 27 |
+
w, h = image.size
|
| 28 |
+
# Upscale x4
|
| 29 |
+
return image.resize((w * 4, h * 4))
|
| 30 |
+
|
| 31 |
+
def postprocess(self, output):
|
| 32 |
+
# Save output image to a file-like object
|
| 33 |
+
buffer = io.BytesIO()
|
| 34 |
+
output.save(buffer, format="PNG")
|
| 35 |
+
buffer.seek(0) # Reset buffer pointer
|
| 36 |
+
return buffer
|
| 37 |
+
|
| 38 |
+
def inference(self, data):
|
| 39 |
+
# Preprocess input
|
| 40 |
+
control_image = self.preprocess(data)
|
| 41 |
+
# Generate output
|
| 42 |
+
output_image = self.pipe(
|
| 43 |
+
prompt=data.get("prompt", ""),
|
| 44 |
+
control_image=control_image,
|
| 45 |
+
controlnet_conditioning_scale=0.6,
|
| 46 |
+
num_inference_steps=28,
|
| 47 |
+
guidance_scale=3.5,
|
| 48 |
+
height=control_image.size[1],
|
| 49 |
+
width=control_image.size[0],
|
| 50 |
+
).images[0]
|
| 51 |
+
# Postprocess output
|
| 52 |
+
return self.postprocess(output_image)
|