huyai123's picture
Update handler.py
27e6396 verified
raw
history blame
2.04 kB
import os
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from io import BytesIO
class EndpointHandler:
def __init__(self, model_dir="huyai123/Flux.1-dev-Image-Upscaler"):
# Access the environment variable
HUGGINGFACE_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
if not HUGGINGFACE_API_TOKEN:
raise ValueError("HUGGINGFACE_API_TOKEN")
# Load model and pipeline
self.controlnet = FluxControlNetModel.from_pretrained(
model_dir, torch_dtype=torch.bfloat16, use_auth_token=HUGGINGFACE_API_TOKEN
)
self.pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=self.controlnet,
torch_dtype=torch.bfloat16,
use_auth_token=HUGGINGFACE_API_TOKEN
)
self.pipe.to("cuda")
def preprocess(self, data):
# Load image from file
image_file = data.get("control_image", None)
if not image_file:
raise ValueError("Missing control_image in input.")
image = Image.open(image_file)
w, h = image.size
# Upscale x4
return image.resize((w * 4, h * 4))
def postprocess(self, output):
# Save output image to a file-like object
buffer = BytesIO()
output.save(buffer, format="PNG")
buffer.seek(0) # Reset buffer pointer
return buffer
def inference(self, data):
# Preprocess input
control_image = self.preprocess(data)
# Generate output
output_image = self.pipe(
prompt=data.get("prompt", ""),
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=28,
height=control_image.size[1],
width=control_image.size[0],
).images[0]
# Postprocess output
return self.postprocess(output_image)