Create Train_n_save.py
Browse files- Train_n_save.py +50 -0
Train_n_save.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from neural_network import create_neural_network_model # Import your custom model function
|
| 5 |
+
|
| 6 |
+
# Load training data from CSV using pandas
|
| 7 |
+
training_data = pd.read_csv('training_data.csv')
|
| 8 |
+
|
| 9 |
+
# Assuming your training data has columns like 'features', 'labels', and 'rewards'
|
| 10 |
+
train_inputs = training_data['features'] # Replace 'features' with the actual column name
|
| 11 |
+
train_labels = training_data['labels'] # Replace 'labels' with the actual column name
|
| 12 |
+
train_rewards = training_data['rewards'] # Replace 'rewards' with the actual column name
|
| 13 |
+
|
| 14 |
+
# Define your model architecture
|
| 15 |
+
seq_length = 128 # Example sequence length
|
| 16 |
+
d_model = 512 # Example dimension
|
| 17 |
+
action_space_size = 10 # Example action space size
|
| 18 |
+
|
| 19 |
+
model = create_neural_network_model(seq_length, d_model, action_space_size)
|
| 20 |
+
|
| 21 |
+
# Define loss functions and metrics
|
| 22 |
+
losses = {'Output': 'categorical_crossentropy', 'Reward': 'mean_squared_error'}
|
| 23 |
+
metrics = {'Output': 'accuracy'}
|
| 24 |
+
|
| 25 |
+
# Compile the model
|
| 26 |
+
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
|
| 27 |
+
model.compile(optimizer=opt, loss=losses, metrics=metrics)
|
| 28 |
+
|
| 29 |
+
# Define callbacks (e.g., ModelCheckpoint, EarlyStopping) as needed
|
| 30 |
+
callbacks = [
|
| 31 |
+
ModelCheckpoint(filepath='model_weights.h5', save_best_only=True),
|
| 32 |
+
EarlyStopping(patience=5, restore_best_weights=True)
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# Train the model
|
| 36 |
+
history = model.fit(
|
| 37 |
+
x=train_inputs, # Your training data
|
| 38 |
+
y={'Output': train_labels, 'Reward': train_rewards}, # Your training labels and rewards
|
| 39 |
+
batch_size=32,
|
| 40 |
+
epochs=50,
|
| 41 |
+
callbacks=callbacks
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Save the trained model
|
| 45 |
+
model.save('custom_model.h5')
|
| 46 |
+
|
| 47 |
+
# You can also save training history for analysis and plotting
|
| 48 |
+
import pickle
|
| 49 |
+
with open('training_history.pickle', 'wb') as history_file:
|
| 50 |
+
pickle.dump(history.history, history_file)
|