File size: 10,664 Bytes
5643ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# coding=utf-8
# Copyright 2025 The rednote-hilab team and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#from ...configuration_utils import PretrainedConfig, layer_type_validation
#from ...utils import logging

from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.utils import logging

logger = logging.get_logger(__name__)


class Dots1Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Dots1Model`]. It is used to instantiate a
    `dots.llm1` model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of
    [rednote-hilab/dots.llm1.base](https://huggingface.co/rednote-hilab/dots.llm1.base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 152064):
            Vocabulary size of the model. Defines the number of different tokens that can be represented by the
            `input_ids` passed when calling [`Dots1Model`].
        hidden_size (`int`, *optional*, defaults to 4608):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 10944):
            Dimension of the MLP representations.
        moe_intermediate_size (`int`, *optional*, defaults to 1408):
            Dimension of the MoE representations.
        num_hidden_layers (`int`, *optional*, defaults to 62):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            Number of key/value heads for Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, Multi
            Head Attention (MHA) is used. If `num_key_value_heads=1`, Multi Query Attention (MQA) is used. Otherwise,
            Grouped Query Attention (GQA) is used. If not specified, defaults to `num_attention_heads`.
        n_shared_experts (`int`, *optional*, default=None):
            Number of shared experts. None means dense model.
        n_routed_experts (`int`, *optional*, default=None):
            Number of routed experts. None means dense model.
        n_group (`int`, *optional*, defaults to 1):
            Number of groups for routed experts.
        topk_group (`int`, *optional*, defaults to 1):
            Number of selected groups for each token (selected experts only within `topk_group` groups).
        num_experts_per_tok (`int`, *optional*, default=None):
            Number of selected experts. None means dense model.
        first_k_dense_replace (`int`, *optional*, defaults to 0):
            Number of dense layers at the beginning of the model before the first MoE layer.
        norm_topk_prob (`bool`, *optional*, defaults to `False`):
            Whether to normalize the weights of the routed experts.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string).
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            Maximum sequence length the model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            Standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            Epsilon used by the RMS normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions. Only relevant if `config.is_decoder=True`.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental: tensor parallelism rank used during pretraining. This is necessary for exact reproducibility
            of pretraining results.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie the input and output word embeddings.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Dictionary for scaling RoPE embeddings. Supports `{"type": strategy name, "factor": scaling factor}`.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the self-attention projections.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            Dropout ratio for the attention probabilities.
        routed_scaling_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for routed experts.
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window for attention. If not specified, defaults to `4096`.
        max_window_layers (`int`, *optional*, defaults to 62):
            The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
        layer_types (`list`, *optional*):
            Attention pattern for each layer.

    Examples:
        ```python
        >>> from transformers import Dots1Model, Dots1Config

        >>> # Initializing a Dots1 style configuration
        >>> configuration = Dots1Config()

        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    """

    model_type = "dots1"
    keys_to_ignore_at_inference = ["past_key_values"]

    base_model_tp_plan = {  # TODO: only replicate attention layers when > first_k_dense_replace
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.experts.*.gate_proj": "local_colwise",
        "layers.*.mlp.experts.*.up_proj": "local_colwise",
        "layers.*.mlp.experts.*.down_proj": "local_rowwise",
        "layers.*.mlp.experts.*": "local",  # each expert is wrapped in a module list
        "layers.*.mlp.shared_experts.gate_proj": "local_colwise",
        "layers.*.mlp.shared_experts.up_proj": "local_colwise",
        "layers.*.mlp.shared_experts.down_proj": "local_rowwise",
        "layers.*.mlp.shared_experts": "local",
        "layers.*.mlp.gate_proj": "local_colwise",
        "layers.*.mlp.up_proj": "local_colwise",
        "layers.*.mlp.down_proj": "local_rowwise",
        "layers.*.mlp": "gather",  # This is the only moment where results are gathered
    }

    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=152064,
        hidden_size=4608,
        intermediate_size=10944,
        moe_intermediate_size=1408,
        num_hidden_layers=62,
        num_attention_heads=32,
        num_key_value_heads=32,
        n_shared_experts=None,
        n_routed_experts=None,
        n_group=1,
        topk_group=1,
        num_experts_per_tok=None,
        first_k_dense_replace=0,
        norm_topk_prob=False,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        routed_scaling_factor=1.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=62,
        layer_types=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.routed_scaling_factor = routed_scaling_factor
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window if self.use_sliding_window else None
        self.max_window_layers = max_window_layers

        self.layer_types = layer_types
        if self.layer_types is None:
            self.layer_types = [
                "sliding_attention"
                if self.sliding_window is not None and i >= self.max_window_layers
                else "full_attention"
                for i in range(self.num_hidden_layers)
            ]
        layer_type_validation(self.layer_types)

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


__all__ = ["Dots1Config"]