{"current_steps": 5, "total_steps": 645, "loss": 1.6534, "learning_rate": 5e-07, "epoch": 0.02320185614849188, "percentage": 0.78, "elapsed_time": "0:01:08", "remaining_time": "2:27:00"} {"current_steps": 10, "total_steps": 645, "loss": 1.5286, "learning_rate": 1e-06, "epoch": 0.04640371229698376, "percentage": 1.55, "elapsed_time": "0:02:12", "remaining_time": "2:19:47"} {"current_steps": 15, "total_steps": 645, "loss": 1.2854, "learning_rate": 9.998470286265414e-07, "epoch": 0.06960556844547564, "percentage": 2.33, "elapsed_time": "0:03:14", "remaining_time": "2:16:06"} {"current_steps": 20, "total_steps": 645, "loss": 1.2312, "learning_rate": 9.993882081071305e-07, "epoch": 0.09280742459396751, "percentage": 3.1, "elapsed_time": "0:04:17", "remaining_time": "2:14:06"} {"current_steps": 25, "total_steps": 645, "loss": 1.1896, "learning_rate": 9.986238191873872e-07, "epoch": 0.11600928074245939, "percentage": 3.88, "elapsed_time": "0:05:19", "remaining_time": "2:12:09"} {"current_steps": 30, "total_steps": 645, "loss": 1.1918, "learning_rate": 9.975543295858033e-07, "epoch": 0.13921113689095127, "percentage": 4.65, "elapsed_time": "0:06:22", "remaining_time": "2:10:37"} {"current_steps": 35, "total_steps": 645, "loss": 1.1547, "learning_rate": 9.961803937075514e-07, "epoch": 0.16241299303944315, "percentage": 5.43, "elapsed_time": "0:07:24", "remaining_time": "2:09:03"} {"current_steps": 40, "total_steps": 645, "loss": 1.1326, "learning_rate": 9.945028522440653e-07, "epoch": 0.18561484918793503, "percentage": 6.2, "elapsed_time": "0:08:27", "remaining_time": "2:07:50"} {"current_steps": 45, "total_steps": 645, "loss": 1.1409, "learning_rate": 9.925227316586314e-07, "epoch": 0.2088167053364269, "percentage": 6.98, "elapsed_time": "0:09:29", "remaining_time": "2:06:37"} {"current_steps": 50, "total_steps": 645, "loss": 1.1348, "learning_rate": 9.902412435583125e-07, "epoch": 0.23201856148491878, "percentage": 7.75, "elapsed_time": "0:10:32", "remaining_time": "2:05:23"} {"current_steps": 50, "total_steps": 645, "eval_loss": 1.1267675161361694, "epoch": 0.23201856148491878, "percentage": 7.75, "elapsed_time": "0:12:17", "remaining_time": "2:26:19"} {"current_steps": 55, "total_steps": 645, "loss": 1.1167, "learning_rate": 9.876597839525813e-07, "epoch": 0.2552204176334107, "percentage": 8.53, "elapsed_time": "0:13:20", "remaining_time": "2:23:04"} {"current_steps": 60, "total_steps": 645, "loss": 1.1059, "learning_rate": 9.847799323991233e-07, "epoch": 0.27842227378190254, "percentage": 9.3, "elapsed_time": "0:14:22", "remaining_time": "2:20:11"} {"current_steps": 65, "total_steps": 645, "loss": 1.1173, "learning_rate": 9.816034510373285e-07, "epoch": 0.30162412993039445, "percentage": 10.08, "elapsed_time": "0:15:25", "remaining_time": "2:17:40"} {"current_steps": 70, "total_steps": 645, "loss": 1.1091, "learning_rate": 9.781322835100637e-07, "epoch": 0.3248259860788863, "percentage": 10.85, "elapsed_time": "0:16:27", "remaining_time": "2:15:12"} {"current_steps": 75, "total_steps": 645, "loss": 1.0967, "learning_rate": 9.743685537743856e-07, "epoch": 0.3480278422273782, "percentage": 11.63, "elapsed_time": "0:17:30", "remaining_time": "2:13:03"} {"current_steps": 80, "total_steps": 645, "loss": 1.0758, "learning_rate": 9.70314564801922e-07, "epoch": 0.37122969837587005, "percentage": 12.4, "elapsed_time": "0:18:33", "remaining_time": "2:11:01"} {"current_steps": 85, "total_steps": 645, "loss": 1.0862, "learning_rate": 9.659727971697173e-07, "epoch": 0.39443155452436196, "percentage": 13.18, "elapsed_time": "0:19:35", "remaining_time": "2:09:06"} {"current_steps": 90, "total_steps": 645, "loss": 1.0795, "learning_rate": 9.613459075424033e-07, "epoch": 0.4176334106728538, "percentage": 13.95, "elapsed_time": "0:20:38", "remaining_time": "2:07:15"} {"current_steps": 95, "total_steps": 645, "loss": 1.0677, "learning_rate": 9.564367270466245e-07, "epoch": 0.4408352668213457, "percentage": 14.73, "elapsed_time": "0:21:40", "remaining_time": "2:05:27"} {"current_steps": 100, "total_steps": 645, "loss": 1.08, "learning_rate": 9.51248259538713e-07, "epoch": 0.46403712296983757, "percentage": 15.5, "elapsed_time": "0:22:42", "remaining_time": "2:03:46"} {"current_steps": 100, "total_steps": 645, "eval_loss": 1.0813250541687012, "epoch": 0.46403712296983757, "percentage": 15.5, "elapsed_time": "0:24:27", "remaining_time": "2:13:18"} {"current_steps": 105, "total_steps": 645, "loss": 1.0944, "learning_rate": 9.457836797666721e-07, "epoch": 0.4872389791183295, "percentage": 16.28, "elapsed_time": "0:26:05", "remaining_time": "2:14:10"} {"current_steps": 110, "total_steps": 645, "loss": 1.0946, "learning_rate": 9.400463314275941e-07, "epoch": 0.5104408352668214, "percentage": 17.05, "elapsed_time": "0:27:07", "remaining_time": "2:11:57"} {"current_steps": 115, "total_steps": 645, "loss": 1.067, "learning_rate": 9.340397251217008e-07, "epoch": 0.5336426914153132, "percentage": 17.83, "elapsed_time": "0:28:10", "remaining_time": "2:09:50"} {"current_steps": 120, "total_steps": 645, "loss": 1.0664, "learning_rate": 9.27767536204258e-07, "epoch": 0.5568445475638051, "percentage": 18.6, "elapsed_time": "0:29:12", "remaining_time": "2:07:48"} {"current_steps": 125, "total_steps": 645, "loss": 1.0635, "learning_rate": 9.212336025366787e-07, "epoch": 0.580046403712297, "percentage": 19.38, "elapsed_time": "0:30:14", "remaining_time": "2:05:49"} {"current_steps": 130, "total_steps": 645, "loss": 1.0667, "learning_rate": 9.144419221381918e-07, "epoch": 0.6032482598607889, "percentage": 20.16, "elapsed_time": "0:31:17", "remaining_time": "2:03:56"} {"current_steps": 135, "total_steps": 645, "loss": 1.0637, "learning_rate": 9.073966507395121e-07, "epoch": 0.6264501160092807, "percentage": 20.93, "elapsed_time": "0:32:19", "remaining_time": "2:02:06"} {"current_steps": 140, "total_steps": 645, "loss": 1.0634, "learning_rate": 9.001020992400085e-07, "epoch": 0.6496519721577726, "percentage": 21.71, "elapsed_time": "0:33:21", "remaining_time": "2:00:20"} {"current_steps": 145, "total_steps": 645, "loss": 1.0637, "learning_rate": 8.925627310699274e-07, "epoch": 0.6728538283062645, "percentage": 22.48, "elapsed_time": "0:34:23", "remaining_time": "1:58:36"} {"current_steps": 150, "total_steps": 645, "loss": 1.0619, "learning_rate": 8.84783159459285e-07, "epoch": 0.6960556844547564, "percentage": 23.26, "elapsed_time": "0:35:25", "remaining_time": "1:56:55"} {"current_steps": 150, "total_steps": 645, "eval_loss": 1.055559754371643, "epoch": 0.6960556844547564, "percentage": 23.26, "elapsed_time": "0:37:10", "remaining_time": "2:02:41"} {"current_steps": 155, "total_steps": 645, "loss": 1.0575, "learning_rate": 8.767681446150976e-07, "epoch": 0.7192575406032483, "percentage": 24.03, "elapsed_time": "0:38:12", "remaining_time": "2:00:47"} {"current_steps": 160, "total_steps": 645, "loss": 1.0505, "learning_rate": 8.68522590808682e-07, "epoch": 0.7424593967517401, "percentage": 24.81, "elapsed_time": "0:39:15", "remaining_time": "1:58:59"} {"current_steps": 165, "total_steps": 645, "loss": 1.0518, "learning_rate": 8.600515433748001e-07, "epoch": 0.765661252900232, "percentage": 25.58, "elapsed_time": "0:40:17", "remaining_time": "1:57:12"} {"current_steps": 170, "total_steps": 645, "loss": 1.0378, "learning_rate": 8.51360185624495e-07, "epoch": 0.7888631090487239, "percentage": 26.36, "elapsed_time": "0:41:20", "remaining_time": "1:55:29"} {"current_steps": 175, "total_steps": 645, "loss": 1.0358, "learning_rate": 8.424538356734956e-07, "epoch": 0.8120649651972158, "percentage": 27.13, "elapsed_time": "0:42:22", "remaining_time": "1:53:47"} {"current_steps": 180, "total_steps": 645, "loss": 1.0199, "learning_rate": 8.333379431881397e-07, "epoch": 0.8352668213457076, "percentage": 27.91, "elapsed_time": "0:43:23", "remaining_time": "1:52:06"} {"current_steps": 185, "total_steps": 645, "loss": 1.0404, "learning_rate": 8.240180860508026e-07, "epoch": 0.8584686774941995, "percentage": 28.68, "elapsed_time": "0:44:27", "remaining_time": "1:50:31"} {"current_steps": 190, "total_steps": 645, "loss": 1.0537, "learning_rate": 8.144999669468713e-07, "epoch": 0.8816705336426914, "percentage": 29.46, "elapsed_time": "0:45:29", "remaining_time": "1:48:57"} {"current_steps": 195, "total_steps": 645, "loss": 1.0461, "learning_rate": 8.047894098753539e-07, "epoch": 0.9048723897911833, "percentage": 30.23, "elapsed_time": "0:46:32", "remaining_time": "1:47:23"} {"current_steps": 200, "total_steps": 645, "loss": 1.0468, "learning_rate": 7.948923565852597e-07, "epoch": 0.9280742459396751, "percentage": 31.01, "elapsed_time": "0:47:34", "remaining_time": "1:45:50"} {"current_steps": 200, "total_steps": 645, "eval_loss": 1.0335279703140259, "epoch": 0.9280742459396751, "percentage": 31.01, "elapsed_time": "0:49:19", "remaining_time": "1:49:44"} {"current_steps": 205, "total_steps": 645, "loss": 1.0159, "learning_rate": 7.848148629399285e-07, "epoch": 0.951276102088167, "percentage": 31.78, "elapsed_time": "0:50:55", "remaining_time": "1:49:18"} {"current_steps": 210, "total_steps": 645, "loss": 1.0224, "learning_rate": 7.745630952115363e-07, "epoch": 0.974477958236659, "percentage": 32.56, "elapsed_time": "0:51:57", "remaining_time": "1:47:38"} {"current_steps": 215, "total_steps": 645, "loss": 1.0242, "learning_rate": 7.641433263080418e-07, "epoch": 0.9976798143851509, "percentage": 33.33, "elapsed_time": "0:52:59", "remaining_time": "1:45:59"} {"current_steps": 220, "total_steps": 645, "loss": 0.9359, "learning_rate": 7.535619319348865e-07, "epoch": 1.0208816705336428, "percentage": 34.11, "elapsed_time": "0:54:01", "remaining_time": "1:44:22"} {"current_steps": 225, "total_steps": 645, "loss": 0.9014, "learning_rate": 7.428253866937918e-07, "epoch": 1.0440835266821347, "percentage": 34.88, "elapsed_time": "0:55:04", "remaining_time": "1:42:48"} {"current_steps": 230, "total_steps": 645, "loss": 0.8932, "learning_rate": 7.319402601210447e-07, "epoch": 1.0672853828306264, "percentage": 35.66, "elapsed_time": "0:56:06", "remaining_time": "1:41:15"} {"current_steps": 235, "total_steps": 645, "loss": 0.8953, "learning_rate": 7.209132126676933e-07, "epoch": 1.0904872389791183, "percentage": 36.43, "elapsed_time": "0:57:09", "remaining_time": "1:39:43"} {"current_steps": 240, "total_steps": 645, "loss": 0.9011, "learning_rate": 7.097509916241145e-07, "epoch": 1.1136890951276102, "percentage": 37.21, "elapsed_time": "0:58:11", "remaining_time": "1:38:12"} {"current_steps": 245, "total_steps": 645, "loss": 0.879, "learning_rate": 6.984604269914436e-07, "epoch": 1.136890951276102, "percentage": 37.98, "elapsed_time": "0:59:14", "remaining_time": "1:36:42"} {"current_steps": 250, "total_steps": 645, "loss": 0.8999, "learning_rate": 6.870484273023967e-07, "epoch": 1.160092807424594, "percentage": 38.76, "elapsed_time": "1:00:16", "remaining_time": "1:35:13"} {"current_steps": 250, "total_steps": 645, "eval_loss": 1.0276210308074951, "epoch": 1.160092807424594, "percentage": 38.76, "elapsed_time": "1:02:01", "remaining_time": "1:37:59"} {"current_steps": 255, "total_steps": 645, "loss": 0.8799, "learning_rate": 6.755219753940388e-07, "epoch": 1.1832946635730859, "percentage": 39.53, "elapsed_time": "1:03:03", "remaining_time": "1:36:26"} {"current_steps": 260, "total_steps": 645, "loss": 0.8848, "learning_rate": 6.638881241350883e-07, "epoch": 1.2064965197215778, "percentage": 40.31, "elapsed_time": "1:04:05", "remaining_time": "1:34:54"} {"current_steps": 265, "total_steps": 645, "loss": 0.8753, "learning_rate": 6.52153992110368e-07, "epoch": 1.2296983758700697, "percentage": 41.09, "elapsed_time": "1:05:07", "remaining_time": "1:33:23"} {"current_steps": 270, "total_steps": 645, "loss": 0.8898, "learning_rate": 6.403267592650466e-07, "epoch": 1.2529002320185616, "percentage": 41.86, "elapsed_time": "1:06:10", "remaining_time": "1:31:54"} {"current_steps": 275, "total_steps": 645, "loss": 0.8782, "learning_rate": 6.28413662511334e-07, "epoch": 1.2761020881670533, "percentage": 42.64, "elapsed_time": "1:07:12", "remaining_time": "1:30:25"} {"current_steps": 280, "total_steps": 645, "loss": 0.8931, "learning_rate": 6.164219913003207e-07, "epoch": 1.2993039443155452, "percentage": 43.41, "elapsed_time": "1:08:14", "remaining_time": "1:28:57"} {"current_steps": 285, "total_steps": 645, "loss": 0.8696, "learning_rate": 6.043590831616676e-07, "epoch": 1.322505800464037, "percentage": 44.19, "elapsed_time": "1:09:17", "remaining_time": "1:27:31"} {"current_steps": 290, "total_steps": 645, "loss": 0.8822, "learning_rate": 5.92232319213878e-07, "epoch": 1.345707656612529, "percentage": 44.96, "elapsed_time": "1:10:19", "remaining_time": "1:26:05"} {"current_steps": 295, "total_steps": 645, "loss": 0.8995, "learning_rate": 5.800491196478988e-07, "epoch": 1.368909512761021, "percentage": 45.74, "elapsed_time": "1:11:22", "remaining_time": "1:24:41"} {"current_steps": 300, "total_steps": 645, "loss": 0.8818, "learning_rate": 5.678169391868127e-07, "epoch": 1.3921113689095128, "percentage": 46.51, "elapsed_time": "1:12:24", "remaining_time": "1:23:16"} {"current_steps": 300, "total_steps": 645, "eval_loss": 1.016647219657898, "epoch": 1.3921113689095128, "percentage": 46.51, "elapsed_time": "1:14:09", "remaining_time": "1:25:16"} {"current_steps": 305, "total_steps": 645, "loss": 0.866, "learning_rate": 5.555432625244023e-07, "epoch": 1.4153132250580047, "percentage": 47.29, "elapsed_time": "1:15:45", "remaining_time": "1:24:26"} {"current_steps": 310, "total_steps": 645, "loss": 0.8807, "learning_rate": 5.432355997453728e-07, "epoch": 1.4385150812064964, "percentage": 48.06, "elapsed_time": "1:16:47", "remaining_time": "1:22:59"} {"current_steps": 315, "total_steps": 645, "loss": 0.8874, "learning_rate": 5.309014817300421e-07, "epoch": 1.4617169373549883, "percentage": 48.84, "elapsed_time": "1:17:51", "remaining_time": "1:21:33"} {"current_steps": 320, "total_steps": 645, "loss": 0.8798, "learning_rate": 5.185484555463026e-07, "epoch": 1.4849187935034802, "percentage": 49.61, "elapsed_time": "1:18:53", "remaining_time": "1:20:07"} {"current_steps": 325, "total_steps": 645, "loss": 0.8941, "learning_rate": 5.061840798316814e-07, "epoch": 1.5081206496519721, "percentage": 50.39, "elapsed_time": "1:19:55", "remaining_time": "1:18:42"} {"current_steps": 330, "total_steps": 645, "loss": 0.8825, "learning_rate": 4.938159201683186e-07, "epoch": 1.531322505800464, "percentage": 51.16, "elapsed_time": "1:20:57", "remaining_time": "1:17:17"} {"current_steps": 335, "total_steps": 645, "loss": 0.8648, "learning_rate": 4.814515444536974e-07, "epoch": 1.554524361948956, "percentage": 51.94, "elapsed_time": "1:22:00", "remaining_time": "1:15:52"} {"current_steps": 340, "total_steps": 645, "loss": 0.8767, "learning_rate": 4.69098518269958e-07, "epoch": 1.5777262180974478, "percentage": 52.71, "elapsed_time": "1:23:01", "remaining_time": "1:14:29"} {"current_steps": 345, "total_steps": 645, "loss": 0.8819, "learning_rate": 4.5676440025462726e-07, "epoch": 1.6009280742459397, "percentage": 53.49, "elapsed_time": "1:24:04", "remaining_time": "1:13:06"} {"current_steps": 350, "total_steps": 645, "loss": 0.8729, "learning_rate": 4.444567374755977e-07, "epoch": 1.6241299303944317, "percentage": 54.26, "elapsed_time": "1:25:05", "remaining_time": "1:11:43"} {"current_steps": 350, "total_steps": 645, "eval_loss": 1.0092262029647827, "epoch": 1.6241299303944317, "percentage": 54.26, "elapsed_time": "1:26:50", "remaining_time": "1:13:11"} {"current_steps": 355, "total_steps": 645, "loss": 0.8701, "learning_rate": 4.3218306081318713e-07, "epoch": 1.6473317865429236, "percentage": 55.04, "elapsed_time": "1:27:52", "remaining_time": "1:11:47"} {"current_steps": 360, "total_steps": 645, "loss": 0.8668, "learning_rate": 4.199508803521012e-07, "epoch": 1.6705336426914155, "percentage": 55.81, "elapsed_time": "1:28:54", "remaining_time": "1:10:23"} {"current_steps": 365, "total_steps": 645, "loss": 0.8746, "learning_rate": 4.0776768078612207e-07, "epoch": 1.6937354988399071, "percentage": 56.59, "elapsed_time": "1:29:56", "remaining_time": "1:09:00"} {"current_steps": 370, "total_steps": 645, "loss": 0.8796, "learning_rate": 3.9564091683833244e-07, "epoch": 1.716937354988399, "percentage": 57.36, "elapsed_time": "1:30:59", "remaining_time": "1:07:37"} {"current_steps": 375, "total_steps": 645, "loss": 0.8694, "learning_rate": 3.835780086996793e-07, "epoch": 1.740139211136891, "percentage": 58.14, "elapsed_time": "1:32:02", "remaining_time": "1:06:15"} {"current_steps": 380, "total_steps": 645, "loss": 0.8807, "learning_rate": 3.7158633748866607e-07, "epoch": 1.7633410672853829, "percentage": 58.91, "elapsed_time": "1:33:04", "remaining_time": "1:04:54"} {"current_steps": 385, "total_steps": 645, "loss": 0.8759, "learning_rate": 3.596732407349536e-07, "epoch": 1.7865429234338746, "percentage": 59.69, "elapsed_time": "1:34:06", "remaining_time": "1:03:33"} {"current_steps": 390, "total_steps": 645, "loss": 0.8809, "learning_rate": 3.4784600788963193e-07, "epoch": 1.8097447795823665, "percentage": 60.47, "elapsed_time": "1:35:08", "remaining_time": "1:02:12"} {"current_steps": 395, "total_steps": 645, "loss": 0.8709, "learning_rate": 3.3611187586491157e-07, "epoch": 1.8329466357308584, "percentage": 61.24, "elapsed_time": "1:36:11", "remaining_time": "1:00:52"} {"current_steps": 400, "total_steps": 645, "loss": 0.8653, "learning_rate": 3.244780246059612e-07, "epoch": 1.8561484918793503, "percentage": 62.02, "elapsed_time": "1:37:13", "remaining_time": "0:59:32"} {"current_steps": 400, "total_steps": 645, "eval_loss": 1.0026302337646484, "epoch": 1.8561484918793503, "percentage": 62.02, "elapsed_time": "1:38:58", "remaining_time": "1:00:37"} {"current_steps": 405, "total_steps": 645, "loss": 0.8623, "learning_rate": 3.129515726976034e-07, "epoch": 1.8793503480278422, "percentage": 62.79, "elapsed_time": "1:40:31", "remaining_time": "0:59:34"} {"current_steps": 410, "total_steps": 645, "loss": 0.8675, "learning_rate": 3.015395730085565e-07, "epoch": 1.902552204176334, "percentage": 63.57, "elapsed_time": "1:41:34", "remaining_time": "0:58:12"} {"current_steps": 415, "total_steps": 645, "loss": 0.8593, "learning_rate": 2.902490083758856e-07, "epoch": 1.925754060324826, "percentage": 64.34, "elapsed_time": "1:42:36", "remaining_time": "0:56:52"} {"current_steps": 420, "total_steps": 645, "loss": 0.8802, "learning_rate": 2.790867873323067e-07, "epoch": 1.948955916473318, "percentage": 65.12, "elapsed_time": "1:43:38", "remaining_time": "0:55:31"} {"current_steps": 425, "total_steps": 645, "loss": 0.866, "learning_rate": 2.680597398789554e-07, "epoch": 1.9721577726218098, "percentage": 65.89, "elapsed_time": "1:44:40", "remaining_time": "0:54:11"} {"current_steps": 430, "total_steps": 645, "loss": 0.8874, "learning_rate": 2.5717461330620815e-07, "epoch": 1.9953596287703017, "percentage": 66.67, "elapsed_time": "1:45:43", "remaining_time": "0:52:51"} {"current_steps": 435, "total_steps": 645, "loss": 0.8141, "learning_rate": 2.464380680651134e-07, "epoch": 2.0185614849187936, "percentage": 67.44, "elapsed_time": "1:46:45", "remaining_time": "0:51:32"} {"current_steps": 440, "total_steps": 645, "loss": 0.7797, "learning_rate": 2.358566736919581e-07, "epoch": 2.0417633410672855, "percentage": 68.22, "elapsed_time": "1:47:48", "remaining_time": "0:50:13"} {"current_steps": 445, "total_steps": 645, "loss": 0.7814, "learning_rate": 2.2543690478846388e-07, "epoch": 2.0649651972157774, "percentage": 68.99, "elapsed_time": "1:48:50", "remaining_time": "0:48:55"} {"current_steps": 450, "total_steps": 645, "loss": 0.7781, "learning_rate": 2.1518513706007152e-07, "epoch": 2.0881670533642693, "percentage": 69.77, "elapsed_time": "1:49:52", "remaining_time": "0:47:36"} {"current_steps": 450, "total_steps": 645, "eval_loss": 1.0152158737182617, "epoch": 2.0881670533642693, "percentage": 69.77, "elapsed_time": "1:51:37", "remaining_time": "0:48:22"} {"current_steps": 455, "total_steps": 645, "loss": 0.7741, "learning_rate": 2.051076434147403e-07, "epoch": 2.111368909512761, "percentage": 70.54, "elapsed_time": "1:52:38", "remaining_time": "0:47:02"} {"current_steps": 460, "total_steps": 645, "loss": 0.7806, "learning_rate": 1.9521059012464607e-07, "epoch": 2.1345707656612527, "percentage": 71.32, "elapsed_time": "1:53:41", "remaining_time": "0:45:43"} {"current_steps": 465, "total_steps": 645, "loss": 0.7808, "learning_rate": 1.855000330531289e-07, "epoch": 2.1577726218097446, "percentage": 72.09, "elapsed_time": "1:54:43", "remaining_time": "0:44:24"} {"current_steps": 470, "total_steps": 645, "loss": 0.7805, "learning_rate": 1.7598191394919737e-07, "epoch": 2.1809744779582365, "percentage": 72.87, "elapsed_time": "1:55:46", "remaining_time": "0:43:06"} {"current_steps": 475, "total_steps": 645, "loss": 0.7951, "learning_rate": 1.666620568118603e-07, "epoch": 2.2041763341067284, "percentage": 73.64, "elapsed_time": "1:56:48", "remaining_time": "0:41:48"} {"current_steps": 480, "total_steps": 645, "loss": 0.776, "learning_rate": 1.5754616432650443e-07, "epoch": 2.2273781902552203, "percentage": 74.42, "elapsed_time": "1:57:51", "remaining_time": "0:40:30"} {"current_steps": 485, "total_steps": 645, "loss": 0.7721, "learning_rate": 1.4863981437550498e-07, "epoch": 2.2505800464037122, "percentage": 75.19, "elapsed_time": "1:58:53", "remaining_time": "0:39:13"} {"current_steps": 490, "total_steps": 645, "loss": 0.7755, "learning_rate": 1.3994845662519983e-07, "epoch": 2.273781902552204, "percentage": 75.97, "elapsed_time": "1:59:55", "remaining_time": "0:37:56"} {"current_steps": 495, "total_steps": 645, "loss": 0.786, "learning_rate": 1.3147740919131812e-07, "epoch": 2.296983758700696, "percentage": 76.74, "elapsed_time": "2:00:57", "remaining_time": "0:36:39"} {"current_steps": 500, "total_steps": 645, "loss": 0.7742, "learning_rate": 1.2323185538490228e-07, "epoch": 2.320185614849188, "percentage": 77.52, "elapsed_time": "2:01:59", "remaining_time": "0:35:22"} {"current_steps": 500, "total_steps": 645, "eval_loss": 1.0131419897079468, "epoch": 2.320185614849188, "percentage": 77.52, "elapsed_time": "2:03:44", "remaining_time": "0:35:53"} {"current_steps": 505, "total_steps": 645, "loss": 0.7683, "learning_rate": 1.1521684054071523e-07, "epoch": 2.34338747099768, "percentage": 78.29, "elapsed_time": "2:05:18", "remaining_time": "0:34:44"} {"current_steps": 510, "total_steps": 645, "loss": 0.7757, "learning_rate": 1.0743726893007254e-07, "epoch": 2.3665893271461718, "percentage": 79.07, "elapsed_time": "2:06:20", "remaining_time": "0:33:26"} {"current_steps": 515, "total_steps": 645, "loss": 0.7705, "learning_rate": 9.989790075999144e-08, "epoch": 2.3897911832946637, "percentage": 79.84, "elapsed_time": "2:07:22", "remaining_time": "0:32:09"} {"current_steps": 520, "total_steps": 645, "loss": 0.7732, "learning_rate": 9.260334926048785e-08, "epoch": 2.4129930394431556, "percentage": 80.62, "elapsed_time": "2:08:24", "remaining_time": "0:30:52"} {"current_steps": 525, "total_steps": 645, "loss": 0.789, "learning_rate": 8.555807786180813e-08, "epoch": 2.4361948955916475, "percentage": 81.4, "elapsed_time": "2:09:27", "remaining_time": "0:29:35"} {"current_steps": 530, "total_steps": 645, "loss": 0.7868, "learning_rate": 7.876639746332131e-08, "epoch": 2.4593967517401394, "percentage": 82.17, "elapsed_time": "2:10:30", "remaining_time": "0:28:18"} {"current_steps": 535, "total_steps": 645, "loss": 0.7794, "learning_rate": 7.223246379574205e-08, "epoch": 2.4825986078886313, "percentage": 82.95, "elapsed_time": "2:11:32", "remaining_time": "0:27:02"} {"current_steps": 540, "total_steps": 645, "loss": 0.7786, "learning_rate": 6.596027487829913e-08, "epoch": 2.505800464037123, "percentage": 83.72, "elapsed_time": "2:12:35", "remaining_time": "0:25:46"} {"current_steps": 545, "total_steps": 645, "loss": 0.7677, "learning_rate": 5.995366857240591e-08, "epoch": 2.529002320185615, "percentage": 84.5, "elapsed_time": "2:13:37", "remaining_time": "0:24:31"} {"current_steps": 550, "total_steps": 645, "loss": 0.7689, "learning_rate": 5.421632023332778e-08, "epoch": 2.5522041763341066, "percentage": 85.27, "elapsed_time": "2:14:40", "remaining_time": "0:23:15"} {"current_steps": 550, "total_steps": 645, "eval_loss": 1.0137938261032104, "epoch": 2.5522041763341066, "percentage": 85.27, "elapsed_time": "2:16:25", "remaining_time": "0:23:33"} {"current_steps": 555, "total_steps": 645, "loss": 0.775, "learning_rate": 4.8751740461286826e-08, "epoch": 2.5754060324825985, "percentage": 86.05, "elapsed_time": "2:17:27", "remaining_time": "0:22:17"} {"current_steps": 560, "total_steps": 645, "loss": 0.7699, "learning_rate": 4.356327295337542e-08, "epoch": 2.5986078886310904, "percentage": 86.82, "elapsed_time": "2:18:30", "remaining_time": "0:21:01"} {"current_steps": 565, "total_steps": 645, "loss": 0.7733, "learning_rate": 3.865409245759671e-08, "epoch": 2.6218097447795823, "percentage": 87.6, "elapsed_time": "2:19:32", "remaining_time": "0:19:45"} {"current_steps": 570, "total_steps": 645, "loss": 0.7685, "learning_rate": 3.402720283028277e-08, "epoch": 2.645011600928074, "percentage": 88.37, "elapsed_time": "2:20:35", "remaining_time": "0:18:29"} {"current_steps": 575, "total_steps": 645, "loss": 0.7884, "learning_rate": 2.968543519807809e-08, "epoch": 2.668213457076566, "percentage": 89.15, "elapsed_time": "2:21:37", "remaining_time": "0:17:14"} {"current_steps": 580, "total_steps": 645, "loss": 0.7837, "learning_rate": 2.5631446225614527e-08, "epoch": 2.691415313225058, "percentage": 89.92, "elapsed_time": "2:22:40", "remaining_time": "0:15:59"} {"current_steps": 585, "total_steps": 645, "loss": 0.7813, "learning_rate": 2.1867716489936294e-08, "epoch": 2.71461716937355, "percentage": 90.7, "elapsed_time": "2:23:42", "remaining_time": "0:14:44"} {"current_steps": 590, "total_steps": 645, "loss": 0.7775, "learning_rate": 1.8396548962671454e-08, "epoch": 2.737819025522042, "percentage": 91.47, "elapsed_time": "2:24:44", "remaining_time": "0:13:29"} {"current_steps": 595, "total_steps": 645, "loss": 0.7674, "learning_rate": 1.5220067600876684e-08, "epoch": 2.7610208816705337, "percentage": 92.25, "elapsed_time": "2:25:46", "remaining_time": "0:12:14"} {"current_steps": 600, "total_steps": 645, "loss": 0.7824, "learning_rate": 1.2340216047418694e-08, "epoch": 2.7842227378190256, "percentage": 93.02, "elapsed_time": "2:26:48", "remaining_time": "0:11:00"} {"current_steps": 600, "total_steps": 645, "eval_loss": 1.0129340887069702, "epoch": 2.7842227378190256, "percentage": 93.02, "elapsed_time": "2:28:33", "remaining_time": "0:11:08"} {"current_steps": 605, "total_steps": 645, "loss": 0.7668, "learning_rate": 9.758756441687332e-09, "epoch": 2.8074245939675175, "percentage": 93.8, "elapsed_time": "2:33:09", "remaining_time": "0:10:07"} {"current_steps": 610, "total_steps": 645, "loss": 0.7727, "learning_rate": 7.477268341368359e-09, "epoch": 2.8306264501160094, "percentage": 94.57, "elapsed_time": "2:34:11", "remaining_time": "0:08:50"} {"current_steps": 615, "total_steps": 645, "loss": 0.7749, "learning_rate": 5.497147755934628e-09, "epoch": 2.853828306264501, "percentage": 95.35, "elapsed_time": "2:35:14", "remaining_time": "0:07:34"} {"current_steps": 620, "total_steps": 645, "loss": 0.7734, "learning_rate": 3.819606292448541e-09, "epoch": 2.877030162412993, "percentage": 96.12, "elapsed_time": "2:36:16", "remaining_time": "0:06:18"} {"current_steps": 625, "total_steps": 645, "loss": 0.7798, "learning_rate": 2.4456704141967433e-09, "epoch": 2.9002320185614847, "percentage": 96.9, "elapsed_time": "2:37:19", "remaining_time": "0:05:02"} {"current_steps": 630, "total_steps": 645, "loss": 0.7684, "learning_rate": 1.3761808126126483e-09, "epoch": 2.9234338747099766, "percentage": 97.67, "elapsed_time": "2:38:22", "remaining_time": "0:03:46"} {"current_steps": 635, "total_steps": 645, "loss": 0.7664, "learning_rate": 6.117918928693622e-10, "epoch": 2.9466357308584685, "percentage": 98.45, "elapsed_time": "2:39:24", "remaining_time": "0:02:30"} {"current_steps": 640, "total_steps": 645, "loss": 0.7692, "learning_rate": 1.529713734584326e-10, "epoch": 2.9698375870069604, "percentage": 99.22, "elapsed_time": "2:40:27", "remaining_time": "0:01:15"} {"current_steps": 645, "total_steps": 645, "loss": 0.7789, "learning_rate": 0.0, "epoch": 2.9930394431554523, "percentage": 100.0, "elapsed_time": "2:41:29", "remaining_time": "0:00:00"} {"current_steps": 645, "total_steps": 645, "epoch": 2.9930394431554523, "percentage": 100.0, "elapsed_time": "2:45:03", "remaining_time": "0:00:00"}