File size: 2,144 Bytes
75b7420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: RLAIF-V_Coocur-q0_75
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RLAIF-V_Coocur-q0_75
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the RLAIF-V_Coocur-q0_75 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0131
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1348 | 0.2320 | 50 | 1.1268 |
| 1.08 | 0.4640 | 100 | 1.0813 |
| 1.0619 | 0.6961 | 150 | 1.0556 |
| 1.0468 | 0.9281 | 200 | 1.0335 |
| 0.8999 | 1.1601 | 250 | 1.0276 |
| 0.8818 | 1.3921 | 300 | 1.0166 |
| 0.8729 | 1.6241 | 350 | 1.0092 |
| 0.8653 | 1.8561 | 400 | 1.0026 |
| 0.7781 | 2.0882 | 450 | 1.0152 |
| 0.7742 | 2.3202 | 500 | 1.0131 |
| 0.7689 | 2.5522 | 550 | 1.0138 |
| 0.7824 | 2.7842 | 600 | 1.0129 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
|