--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_random_0_60 results: [] --- # AA_preference_random_0_60 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_random_0_60 dataset. It achieves the following results on the evaluation set: - Loss: 0.5970 - Rewards/chosen: 1.1265 - Rewards/rejected: -0.9790 - Rewards/accuracies: 0.7882 - Rewards/margins: 2.1055 - Logps/rejected: -220.6737 - Logps/chosen: -235.6061 - Logits/rejected: -2.2225 - Logits/chosen: -2.2440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5547 | 0.6231 | 50 | 0.5781 | 0.9538 | -0.0749 | 0.7222 | 1.0286 | -211.6319 | -237.3329 | -2.4876 | -2.4892 | | 0.2103 | 1.2461 | 100 | 0.6054 | 1.3022 | -0.3360 | 0.7778 | 1.6381 | -214.2431 | -233.8492 | -2.2990 | -2.3139 | | 0.2095 | 1.8692 | 150 | 0.5998 | 1.4071 | -0.5239 | 0.7743 | 1.9310 | -216.1227 | -232.8000 | -2.3737 | -2.3872 | | 0.1498 | 2.4922 | 200 | 0.5972 | 1.0916 | -1.0086 | 0.7847 | 2.1001 | -220.9690 | -235.9549 | -2.2258 | -2.2469 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3