--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_cosi_0_75 results: [] --- # AA_preference_cosi_0_75 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cosi_0_75 dataset. It achieves the following results on the evaluation set: - Loss: 0.5439 - Rewards/chosen: 1.0617 - Rewards/rejected: -1.0230 - Rewards/accuracies: 0.7292 - Rewards/margins: 2.0847 - Logps/rejected: -221.4094 - Logps/chosen: -257.3853 - Logits/rejected: -2.2898 - Logits/chosen: -2.2986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5811 | 0.7463 | 50 | 0.5699 | 0.5697 | -0.6122 | 0.7333 | 1.1819 | -217.3008 | -262.3048 | -2.3887 | -2.3796 | | 0.2898 | 1.4925 | 100 | 0.5633 | 1.2446 | -0.5551 | 0.7583 | 1.7998 | -216.7303 | -255.5556 | -2.4747 | -2.4717 | | 0.131 | 2.2388 | 150 | 0.5345 | 1.2941 | -0.7142 | 0.7625 | 2.0083 | -218.3207 | -255.0607 | -2.3181 | -2.3241 | | 0.1357 | 2.9851 | 200 | 0.5440 | 1.0620 | -1.0267 | 0.7333 | 2.0886 | -221.4456 | -257.3822 | -2.2899 | -2.2988 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3