# Config for multi-device full finetuning in full_finetune_distributed.py | |
# using a Llama3 8B Instruct model | |
# | |
# This config assumes that you've run the following command before launching | |
# this run: | |
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN> | |
# | |
# To launch on 4 devices, run the following command from root: | |
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full | |
# | |
# You can add specific overrides through the command line. For example | |
# to override the checkpointer directory while launching training | |
# you can run: | |
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | |
# | |
# This config works best when the model is being fine-tuned on 2+ GPUs. | |
# Single device full finetuning requires more memory optimizations. It's | |
# best to use 8B_full_single_device.yaml for those cases | |
# Tokenizer | |
tokenizer: | |
_component_: torchtune.models.llama3.llama3_s_tokenizer | |
path: ../model_zoo/tokenizer.model | |
max_seq_len: 1024 | |
# Dataset | |
dataset: | |
_component_: torchtune.datasets.chat_dataset | |
source: homebrewltd/instruction-speech-WhisperVQ-with-transcription-data-1027k | |
conversation_style: openai | |
max_seq_len: 1024 | |
split: train | |
train_on_input: True | |
seed: 42 | |
shuffle: False | |
# Model Arguments | |
model: | |
_component_: torchtune.models.llama3_1.llama3_1_s_8b | |
# path: model_zoo/Llama3.1_s_8b_init | |
checkpointer: | |
_component_: torchtune.utils.FullModelHFCheckpointerSaveSteps | |
checkpoint_dir: ../model_zoo/llama3-1-s-CP-2000 | |
checkpoint_files: [ | |
pytorch_model.bin, | |
] | |
recipe_checkpoint: null | |
output_dir: ../model_zoo/llama3-1-s-loss-explode-fix | |
model_type: LLAMA3 | |
resume_from_checkpoint: False | |
save_every_n_steps: 1000 | |
max_checkpoints: 3 | |
# Fine-tuning arguments | |
batch_size: 16 | |
epochs: 1 | |
max_steps_per_epoch: null | |
gradient_accumulation_steps: 1 | |
compile: False | |
# Optimizer and Scheduler | |
optimizer: | |
_component_: torch.optim.AdamW #change this to use adam_mini: torchtune.modules.optimizer.Adam_mini | |
weight_decay: 0.005 | |
lr: 0.5e-4 | |
fused: True | |
lr_scheduler: | |
_component_: torchtune.modules.get_cosine_schedule_with_warmup | |
num_warmup_steps: 73 | |
loss: | |
_component_: torch.nn.CrossEntropyLoss | |
fsdp: | |
cpu_offload: False | |
# Training env | |
device: cuda | |
dtype: bf16 | |
# Memory management | |
enable_activation_checkpointing: True | |
memory_efficient_fsdp_wrap: True | |
ac_mode: 'selective' | |
# Logging | |
metric_logger: | |
_component_: torchtune.utils.metric_logging.DiskLogger | |
log_dir: ${output_dir} | |
output_dir: ../model_zoo/Llama3-instruct-log/ | |
log_every_n_steps: 1 | |
log_peak_memory_stats: False |