File size: 12,341 Bytes
1e1c07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- hojzas/proj8-lab1
metrics:
- accuracy
widget:
- text: "def first_with_given_key(iterable, key=repr):\n    res = []\n    keys = set()\n\
    \    for item in iterable:\n        if key(item) not in keys:\n            keys.add(key(item))\n\
    \    return res"
- text: "def first_with_given_key(iterable, key=repr):\n\tget_key = get_key_l(key)\n\
    \tused_keys = []\n\tfor item in iterable:\n\t\tkey_item = get_key(item)\n\t\t\t\
    \n\t\tif key_item in used_keys:\n\t\t\tcontinue\n\t\t\n\t\ttry:\n\t\t\tused_keys.append(hash(key_item))\n\
    \t\texcept TypeError:\n\t\t\tused_keys.apppend(repr(key_item))\n\t\t\t\n\t\tyield\
    \ item"
- text: "def first_with_given_key(iterable, key=repr):\n    set_of_keys = set()\n\
    \    key_lambda = _get_lambda(key)\n    for item in iterable:\n        key = key_lambda(item)\n\
    \        try:\n            key_to_set = hash(key)\n        except TypeError:\n\
    \            key_to_set = repr(key)\n\n        if key_to_set in set_of_keys:\n\
    \            continue\n        set_of_keys.add(key_to_set)\n        yield item"
- text: "def first_with_given_key(iterable, key=lambda y: y):\n    result = list()\n\
    \    func_it = iter(iterable)\n    while True:\n        try:\n            value\
    \ = next(func_it)\n            if key(value) not in result:\n                yield\
    \ value\n                result.insert(-1, key(value))\n        except StopIteration:\n\
    \            break"
- text: "def first_with_given_key(iterable, key=repr):\n    used_keys = {}\n    get_key\
    \ = return_key(key)\n    for item in iterable:\n        item_key = get_key(item)\n\
    \        if item_key in used_keys.keys():\n            continue\n        try:\n\
    \            used_keys[hash(item_key)] = repr(item)\n        except TypeError:\n\
    \            used_keys[repr(item_key)] = repr(item)\n        yield item"
pipeline_tag: text-classification
inference: true
co2_eq_emissions:
  emissions: 2.0314927247192536
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
  ram_total_size: 251.49161911010742
  hours_used: 0.006
  hardware_used: 4 x NVIDIA RTX A5000
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: hojzas/proj8-lab1
      type: hojzas/proj8-lab1
      split: test
    metrics:
    - type: accuracy
      value: 0.9722222222222222
      name: Accuracy
---

# SetFit with sentence-transformers/all-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj8-lab1](https://huggingface.co/datasets/hojzas/proj8-lab1) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [hojzas/proj8-lab1](https://huggingface.co/datasets/hojzas/proj8-lab1)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'def first_with_given_key(iterable, key=lambda x: x):\\n    keys_in_list = []\\n    for it in iterable:\\n    if key(it) not in keys_in_list:\\n        keys_in_list.append(key(it))\\n        yield it'</li><li>'def first_with_given_key(iterable, key=lambda value: value):\\n    it = iter(iterable)\\n    saved_keys = []\\n    while True:\\n        try:\\n            value = next(it)\\n            if key(value) not in saved_keys:\\n                saved_keys.append(key(value))\\n                yield value\\n        except StopIteration:\\n            break'</li><li>'def first_with_given_key(iterable, key=None):\\n    if key is None:\\n        key = lambda x: x\\n    item_list = []\\n    key_set = set()\\n    for item in iterable:\\n        generated_item = key(item)\\n        if generated_item not in item_list:\\n            item_list.append(generated_item)\\n            yield item'</li></ul>                                                                                                                             |
| 1     | <ul><li>'def first_with_given_key(lst, key = lambda x: x):\\n    res = set()\\n    for i in lst:\\n        if repr(key(i)) not in res:\\n            res.add(repr(key(i)))\\n            yield i'</li><li>'def first_with_given_key(iterable, key=repr):\\n    set_of_keys = set()\\n    lambda_key = (lambda x: key(x))\\n    for item in iterable:\\n        key = lambda_key(item)\\n        try:\\n            key_for_set = hash(key)\\n        except TypeError:\\n            key_for_set = repr(key)\\n        if key_for_set in set_of_keys:\\n            continue\\n        set_of_keys.add(key_for_set)\\n        yield item'</li><li>'def first_with_given_key(iterable, key=None):\\n    if key is None:\\n        key = identity\\n    appeared_keys = set()\\n    for item in iterable:\\n        generated_key = key(item)\\n        if not generated_key.__hash__:\\n            generated_key = repr(generated_key)\\n        if generated_key not in appeared_keys:\\n            appeared_keys.add(generated_key)\\n            yield item'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9722   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/proj8-lab1")
# Run inference
preds = model("def first_with_given_key(iterable, key=repr):
    res = []
    keys = set()
    for item in iterable:
        if key(item) not in keys:
            keys.add(key(item))
    return res")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 43  | 91.6071 | 125 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 20                    |
| 1     | 8                     |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0143 | 1    | 0.4043        | -               |
| 0.7143 | 50   | 0.0022        | -               |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.002 kg of CO2
- **Hours Used**: 0.006 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 4 x NVIDIA RTX A5000
- **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- **RAM Size**: 251.49 GB

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->