--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.56875 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2074 - Accuracy: 0.5687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 1.7180 | 0.3812 | | No log | 2.0 | 160 | 1.5309 | 0.3625 | | No log | 3.0 | 240 | 1.4981 | 0.4188 | | No log | 4.0 | 320 | 1.4135 | 0.4313 | | No log | 5.0 | 400 | 1.3722 | 0.4562 | | No log | 6.0 | 480 | 1.3234 | 0.5188 | | 1.3335 | 7.0 | 560 | 1.2675 | 0.525 | | 1.3335 | 8.0 | 640 | 1.3068 | 0.5125 | | 1.3335 | 9.0 | 720 | 1.2965 | 0.5437 | | 1.3335 | 10.0 | 800 | 1.3408 | 0.5125 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1