--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5375 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3694 - Accuracy: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 9 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0629 | 0.1437 | | No log | 2.0 | 20 | 2.0123 | 0.275 | | No log | 3.0 | 30 | 1.9333 | 0.3312 | | No log | 4.0 | 40 | 1.8060 | 0.3812 | | No log | 5.0 | 50 | 1.7009 | 0.3563 | | No log | 6.0 | 60 | 1.6149 | 0.4188 | | No log | 7.0 | 70 | 1.5948 | 0.4437 | | No log | 8.0 | 80 | 1.5391 | 0.5 | | No log | 9.0 | 90 | 1.4770 | 0.4688 | | No log | 10.0 | 100 | 1.5026 | 0.5 | | No log | 11.0 | 110 | 1.4644 | 0.4437 | | No log | 12.0 | 120 | 1.4115 | 0.5125 | | No log | 13.0 | 130 | 1.4216 | 0.4813 | | No log | 14.0 | 140 | 1.4086 | 0.5 | | No log | 15.0 | 150 | 1.4093 | 0.5 | | No log | 16.0 | 160 | 1.3891 | 0.4875 | | No log | 17.0 | 170 | 1.3754 | 0.4938 | | No log | 18.0 | 180 | 1.3779 | 0.5188 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1