--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.54375 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3248 - Accuracy: 0.5437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 18 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.4238 | 0.4625 | | No log | 2.0 | 40 | 1.4238 | 0.4188 | | No log | 3.0 | 60 | 1.4457 | 0.4625 | | No log | 4.0 | 80 | 1.5008 | 0.45 | | No log | 5.0 | 100 | 1.4511 | 0.5062 | | No log | 6.0 | 120 | 1.6197 | 0.4375 | | No log | 7.0 | 140 | 1.6023 | 0.45 | | No log | 8.0 | 160 | 1.6301 | 0.4562 | | No log | 9.0 | 180 | 1.7171 | 0.4688 | | No log | 10.0 | 200 | 1.9459 | 0.3688 | | No log | 11.0 | 220 | 1.8110 | 0.4062 | | No log | 12.0 | 240 | 1.7246 | 0.425 | | No log | 13.0 | 260 | 1.7258 | 0.475 | | No log | 14.0 | 280 | 1.7419 | 0.475 | | No log | 15.0 | 300 | 1.6547 | 0.4625 | | No log | 16.0 | 320 | 1.7231 | 0.4625 | | No log | 17.0 | 340 | 1.8635 | 0.4125 | | No log | 18.0 | 360 | 1.6725 | 0.4562 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1