--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: irem_5e-05_4_5_detect results: [] --- # irem_5e-05_4_5_detect This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5701 - Precision: 0.6177 - Recall: 0.4781 - F1: 0.5390 - Accuracy: 0.9124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.173 | 1.0 | 669 | 0.1389 | 0.2328 | 0.2278 | 0.2303 | 0.9490 | | 0.0999 | 2.0 | 1338 | 0.1502 | 0.3805 | 0.3629 | 0.3715 | 0.9529 | | 0.0629 | 3.0 | 2007 | 0.1825 | 0.3611 | 0.3291 | 0.3444 | 0.9508 | | 0.035 | 4.0 | 2676 | 0.2136 | 0.3857 | 0.3629 | 0.3739 | 0.9526 | | 0.0117 | 5.0 | 3345 | 0.2472 | 0.3816 | 0.3671 | 0.3742 | 0.9523 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0