--- library_name: transformers license: mit base_model: VRLLab/TurkishBERTweet tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: TurkishBERTweet_with_categories results: [] --- # TurkishBERTweet_with_categories This model is a fine-tuned version of [VRLLab/TurkishBERTweet](https://huggingface.co/VRLLab/TurkishBERTweet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1821 - Precision: 0.2178 - Recall: 0.2136 - F1: 0.2157 - Accuracy: 0.9595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2417 | 1.0 | 298 | 0.2246 | 0.1184 | 0.0874 | 0.1006 | 0.9489 | | 0.1675 | 2.0 | 596 | 0.2198 | 0.18 | 0.1748 | 0.1773 | 0.9537 | | 0.1071 | 3.0 | 894 | 0.2781 | 0.2703 | 0.1942 | 0.2260 | 0.9539 | | 0.0622 | 4.0 | 1192 | 0.2997 | 0.1771 | 0.1650 | 0.1709 | 0.9504 | | 0.0374 | 5.0 | 1490 | 0.3237 | 0.2785 | 0.2136 | 0.2418 | 0.9537 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0