--- library_name: transformers license: mit base_model: VRLLab/TurkishBERTweet tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: TurkishBERTweet results: [] --- # TurkishBERTweet This model is a fine-tuned version of [VRLLab/TurkishBERTweet](https://huggingface.co/VRLLab/TurkishBERTweet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1493 - Precision: 0.5667 - Recall: 0.3527 - F1: 0.4348 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1928 | 1.0 | 298 | 0.1833 | 0.5289 | 0.2278 | 0.3184 | 0.9471 | | 0.1299 | 2.0 | 596 | 0.2261 | 0.4174 | 0.3238 | 0.3647 | 0.9456 | | 0.0756 | 3.0 | 894 | 0.2298 | 0.4713 | 0.4093 | 0.4381 | 0.9504 | | 0.0447 | 4.0 | 1192 | 0.2779 | 0.5556 | 0.3915 | 0.4593 | 0.9523 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0