--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_adamax_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8048780487804879 --- # hushem_1x_deit_small_adamax_0001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8185 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.1559 | 0.4878 | | 1.2441 | 2.0 | 12 | 0.8253 | 0.6829 | | 1.2441 | 3.0 | 18 | 0.7434 | 0.6098 | | 0.6071 | 4.0 | 24 | 0.5080 | 0.8293 | | 0.2296 | 5.0 | 30 | 0.6693 | 0.6829 | | 0.2296 | 6.0 | 36 | 0.4300 | 0.8293 | | 0.0509 | 7.0 | 42 | 0.7493 | 0.7317 | | 0.0509 | 8.0 | 48 | 0.5064 | 0.8537 | | 0.0088 | 9.0 | 54 | 0.6021 | 0.8780 | | 0.0021 | 10.0 | 60 | 0.7408 | 0.7805 | | 0.0021 | 11.0 | 66 | 0.9234 | 0.7073 | | 0.0009 | 12.0 | 72 | 0.9965 | 0.6829 | | 0.0009 | 13.0 | 78 | 0.9607 | 0.7317 | | 0.0006 | 14.0 | 84 | 0.8998 | 0.7561 | | 0.0004 | 15.0 | 90 | 0.8548 | 0.7561 | | 0.0004 | 16.0 | 96 | 0.8258 | 0.7561 | | 0.0004 | 17.0 | 102 | 0.8107 | 0.7805 | | 0.0004 | 18.0 | 108 | 0.7999 | 0.8049 | | 0.0003 | 19.0 | 114 | 0.7972 | 0.8049 | | 0.0003 | 20.0 | 120 | 0.7983 | 0.8049 | | 0.0003 | 21.0 | 126 | 0.8011 | 0.8049 | | 0.0003 | 22.0 | 132 | 0.8040 | 0.8049 | | 0.0003 | 23.0 | 138 | 0.8052 | 0.8049 | | 0.0003 | 24.0 | 144 | 0.8067 | 0.8049 | | 0.0003 | 25.0 | 150 | 0.8086 | 0.8049 | | 0.0003 | 26.0 | 156 | 0.8104 | 0.8049 | | 0.0003 | 27.0 | 162 | 0.8133 | 0.8049 | | 0.0003 | 28.0 | 168 | 0.8150 | 0.8049 | | 0.0003 | 29.0 | 174 | 0.8155 | 0.8049 | | 0.0002 | 30.0 | 180 | 0.8162 | 0.8049 | | 0.0002 | 31.0 | 186 | 0.8167 | 0.8049 | | 0.0002 | 32.0 | 192 | 0.8175 | 0.8049 | | 0.0002 | 33.0 | 198 | 0.8178 | 0.8049 | | 0.0002 | 34.0 | 204 | 0.8183 | 0.8049 | | 0.0002 | 35.0 | 210 | 0.8179 | 0.8049 | | 0.0002 | 36.0 | 216 | 0.8182 | 0.8049 | | 0.0002 | 37.0 | 222 | 0.8182 | 0.8049 | | 0.0002 | 38.0 | 228 | 0.8181 | 0.8049 | | 0.0002 | 39.0 | 234 | 0.8183 | 0.8049 | | 0.0002 | 40.0 | 240 | 0.8184 | 0.8049 | | 0.0002 | 41.0 | 246 | 0.8184 | 0.8049 | | 0.0002 | 42.0 | 252 | 0.8185 | 0.8049 | | 0.0002 | 43.0 | 258 | 0.8185 | 0.8049 | | 0.0002 | 44.0 | 264 | 0.8185 | 0.8049 | | 0.0002 | 45.0 | 270 | 0.8185 | 0.8049 | | 0.0002 | 46.0 | 276 | 0.8185 | 0.8049 | | 0.0002 | 47.0 | 282 | 0.8185 | 0.8049 | | 0.0002 | 48.0 | 288 | 0.8185 | 0.8049 | | 0.0002 | 49.0 | 294 | 0.8185 | 0.8049 | | 0.0002 | 50.0 | 300 | 0.8185 | 0.8049 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1