folders: parent_dir: "./results/" model_name: "sr6_128x4_das_nc" settings: game_id: "umk3" step_ratio: 6 frame_shape: !!python/tuple [128, 128, 1] continue_game: 0.0 action_space: "discrete" characters: "Skorpion" difficulty: 5 wrappers_settings: normalize_reward: true no_attack_buttons_combinations: true stack_frames: 4 dilation: 1 add_last_action: true stack_actions: 12 scale: true exclude_image_scaling: true role_relative: true flatten: true filter_keys: ["action", "own_health", "opp_health", "own_side", "opp_side", "opp_character", "stage", "timer"] # optuna results # Best hyperparameters: {'gamma': 0.05944028113410932, 'max_grad_norm': 3.5407661656818026, # 'exponent_n_steps': 5, 'n_epochs': 14, 'batch_size': 512, 'lr': 0.014638860976621421, # 'ent_coef': 2.361611947920214e-06, 'clip_range': 0.3, 'gae_lambda': 0.9520674913500098, # 'vf_coef': 0.6420316461542878, 'net_arch': 'medium', 'activation_fn': 'leaky_relu'} policy_kwargs: #net_arch: [{ pi: [64, 64], vf: [32, 32] }] net_arch: [256, 256] activation_fn: "leaky_relu" ppo_settings: gamma: 0.94 model_checkpoint: "660000" # 0: No checkpoint, else: Load checkpoint (if previously trained) learning_rate: [1.0e-3, 2.5e-6] # To start clip_range: [0.3, 0.015] # To start batch_size: 512 #8 #nminibatches gave different batch size depending on the number of environments: batch_size = (n_steps * n_envs) // nminibatches n_epochs: 14 n_steps: 512 gae_lambda: 0.9520674913500098 ent_coef: 2.361611947920214e-06 vf_coef: 0.6420316461542878 autosave_freq: 50000 time_steps: 1000000