{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a06250724d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0625072560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a06250725f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0625072680>", "_build": "<function ActorCriticPolicy._build at 0x7a0625072710>", "forward": "<function ActorCriticPolicy.forward at 0x7a06250727a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0625072830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a06250728c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0625072950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a06250729e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0625072a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0625072b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a06251c5080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735146000844044307, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMICr6fN6y7QjdkvcPDsbsenAc9tlqXPAAAgD8AAIA/5jW8va59gbo+ig+5r8wCs0K5Jjn3+SQ4AACAPwAAAADNGAy9SYOhPxA7Kb1Tnpu+9Q18PH4/Bb4AAAAAAAAAAAAIxjujmRE/1l+LPFIpU75r+bo8s7ToPAAAAAAAAAAAUyclvjj9bT+/XR2+DLB5vgJ3773GJL67AAAAAAAAAAAAhMI9YetMP3tB3b3xiV2++LEaPQFZMj0AAAAAAAAAAAgtqL6MHao+Ap5GPl6thb64GE67HsOVPQAAAAAAAAAAM30CvkSYuT5D90K87gVpvoavjr21lPi9AAAAAAAAAADjw4g+DMyKP12R1D3KeoS+tld5PiZqNL0AAAAAAAAAAGZ+lzsxfUs/zcdoPKVBkL7iC0g9ljENPgAAAAAAAAAAmudoPfaQbLqwybQ7QCjCNyFeC7sw4Gk2AACAPwAAgD8NHsu9CgdhuQXqcTraiaQ04xVnu1mvj7kAAIA/AAAAAObkW75P9CA/Tfmiu08OeL6CKNm8kSkdPQAAAAAAAAAApoH1vS+RZT9y8wS9fNhsvsGmvDyhNAQ9AAAAAAAAAABLXYO+95tGP/mfEj7qWVa+mlvtvLiIUboAAAAAAAAAANqMjr2GUbE/0qijvqLfo74yB8O9HZXyvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPbIYvWYniMAWyUTegDjAF0lEdAkvX+jmCAc3V9lChoBkdAbVe4o7V8TmgHTboBaAhHQJL4yKQ7tAt1fZQoaAZHQDki4TbnHNpoB00UAWgIR0CS+PgG8mKJdX2UKGgGR0Bx1ni83++/aAdNnQFoCEdAkvlsfV7QcHV9lChoBkdAMWwMc6vJR2gHS+VoCEdAkv5msq8UVXV9lChoBkdAcEOjqOcUd2gHTR8DaAhHQJL+qpxWDHx1fZQoaAZHQGwqZ5qubI9oB02zAWgIR0CS/rsImgJ1dX2UKGgGR0BDhoaLn9vTaAdL/GgIR0CS/uq9oN/fdX2UKGgGR0A4zbAUL2HtaAdL+mgIR0CTBG10T101dX2UKGgGR0BxkKs3hn8LaAdNIgJoCEdAkwZboW56MXV9lChoBkdAbHlfnfVI7WgHTdwBaAhHQJMG/Qswtap1fZQoaAZHQHCJ2jfvWpZoB032AWgIR0CTCBBBRhttdX2UKGgGR0BwCgtDlYEGaAdNmgFoCEdAkw8HuNPxhHV9lChoBkdAcWzBClabF2gHTdIBaAhHQJMlM29+PR11fZQoaAZHQG9K4ZEUj9poB03dAWgIR0CTJZclw97odX2UKGgGR0BwKPgOz6acaAdNqwFoCEdAkygAc1fmcXV9lChoBkdAcHeMRYigTWgHTS0BaAhHQJModtYSxqx1fZQoaAZHQHJmtzS1E3NoB03JAWgIR0CTKYy2hIvrdX2UKGgGR0BxIRJ5E+gUaAdNYQNoCEdAkyp41YQrc3V9lChoBkdAbnjqu8scyWgHTVIBaAhHQJMq9Bv73wl1fZQoaAZHQF3gR8+iaiNoB03oA2gIR0CTK0xt52QodX2UKGgGR0BtRdbgTAWSaAdNrAFoCEdAkyx+df9gnnV9lChoBkdAYtJzWf9P12gHTegDaAhHQJMs8yylenh1fZQoaAZHQF4DZ0CA+ZBoB03oA2gIR0CTLxG47Rv4dX2UKGgGR0BvuRfICEHuaAdNnwFoCEdAkzAYGQjlgnV9lChoBkdAUZBy3kPtlmgHS6NoCEdAkzNAnH/953V9lChoBkdAbtdsyi22HGgHTZIBaAhHQJM4aMUAT7F1fZQoaAZHQGs/JosZpBZoB02FAWgIR0CTOjdpqREGdX2UKGgGR0BeKS3PRiPRaAdN6ANoCEdAkzpE9yLhrHV9lChoBkdAcPjGe+VTrGgHTUQBaAhHQJM6+7nPmgd1fZQoaAZHQHHsrylN1yNoB01qAWgIR0CTPWxxT850dX2UKGgGR0BwHATHsC1aaAdNmwFoCEdAkz3Hy/bj+HV9lChoBkdAcBoh4t6HCWgHTWEBaAhHQJM90/6frbB1fZQoaAZHQG0MDuKGcnVoB01mAWgIR0CTP119ORDDdX2UKGgGR0Bxmjyc0+C9aAdNcAFoCEdAkz9v1tfoinV9lChoBkdAcNqjgydnTWgHTWMBaAhHQJNAtjqfOD91fZQoaAZHQG+f0jcEeQxoB02LAWgIR0CTQsg5BC2MdX2UKGgGR0BiGWwmmce9aAdN6ANoCEdAk0Munyd4FHV9lChoBkdAV3Cdtl7MPmgHTegDaAhHQJNDdC+lCTl1fZQoaAZHQHBo+2iL2pRoB01jAWgIR0CTQ4II4VASdX2UKGgGR0Bs4/C66J66aAdNYAFoCEdAk0ZIiC8OC3V9lChoBkdAbPI7IT4+KWgHTVkBaAhHQJNHXk2gnMN1fZQoaAZHQG9BtbC79Q5oB012AWgIR0CTSWjBVMmGdX2UKGgGR0BvtAaUA1ejaAdNQAFoCEdAk0niBPKuCHV9lChoBkdAcN7IVuaWomgHTYMBaAhHQJNMcW9DhLp1fZQoaAZHQG4QhHkLhJloB02KAWgIR0CTTTjYZl4DdX2UKGgGR0BvtggDA8B/aAdNbQFoCEdAk02+7+T/yXV9lChoBkdAccYtBOYYzmgHTWoBaAhHQJNPLEn9ehR1fZQoaAZHQGqh7wBo24xoB01yAWgIR0CTUfwj+rEMdX2UKGgGR0Bifg99tuUEaAdN6ANoCEdAk1MhSLqD9XV9lChoBkdAb8f4Ju2qk2gHTYkBaAhHQJNoh9w3o9t1fZQoaAZHQG/qFuFYdQxoB02TAWgIR0CTaYngHeJpdX2UKGgGR0Bt+/7YTTOPaAdNBgJoCEdAk2mlyFPBSHV9lChoBkdAcK0toBaLXWgHTaUBaAhHQJNqi0VrRBx1fZQoaAZHQHDwIj0L+gloB01YAWgIR0CTaozOHFgldX2UKGgGR0BjJV+Vkc0caAdN6ANoCEdAk2qW9tdiUnV9lChoBkdAat1SrHU+cGgHTdECaAhHQJNs+Q/5ckd1fZQoaAZHQG4Vsvh60IFoB01ZAWgIR0CTbeHoHLRsdX2UKGgGR0Bxb8+EAYHgaAdNmgFoCEdAk2/wco6S1XV9lChoBkdAcUmeZG8VYmgHTVwBaAhHQJNxaDZlFtt1fZQoaAZHQHDlFXNke6toB02VAWgIR0CTc23FDOTrdX2UKGgGR0BwDV/vv0AcaAdNpgFoCEdAk3N8ZUDMeXV9lChoBkdARZpjMFEApGgHS/loCEdAk3PjZ6D5CXV9lChoBkdAcMtIvrWy1WgHTXYBaAhHQJN0FQcghbJ1fZQoaAZHQG4Y4KpkwvhoB006AmgIR0CTdKqu8scydX2UKGgGR0BGQqrzXjEOaAdNAAFoCEdAk3TL0WdmQXV9lChoBkdARKlXHR1HOWgHTQIBaAhHQJN02Bg/keZ1fZQoaAZHQDtWyeI2wV1oB00hAWgIR0CTdTVJL/S6dX2UKGgGR0BtLVnRLK3eaAdNYwFoCEdAk3a+h4+r2nV9lChoBkdAb2tM9KVY6mgHTYsBaAhHQJN27VYp2EF1fZQoaAZHQHAV1PSDyvtoB01SAWgIR0CTd1UzsQd0dX2UKGgGR0Byq3Bhx5s1aAdNRgFoCEdAk3ioqgAZKnV9lChoBkdAcMcW1twaSGgHTYYBaAhHQJN7xLUTcqR1fZQoaAZHQDEfPnjhky1oB00KAWgIR0CTfDTzd1uBdX2UKGgGR0Bwgqcf/3nIaAdNbgFoCEdAk3z14oqkM3V9lChoBkdAavX+aScLB2gHTS0CaAhHQJN9Pifg75p1fZQoaAZHQFElgvUSZjRoB00TAWgIR0CTfef7aZhKdX2UKGgGR0BxK3/io86naAdNLAFoCEdAk34M/hVENXV9lChoBkdAbqGzhP0qY2gHTTUBaAhHQJN+mKWLP2R1fZQoaAZHQG052jXWe6JoB01WAWgIR0CTf0TYNAkcdX2UKGgGR0BxidW+49X+aAdNjQFoCEdAk3+UrK/203V9lChoBkdAcUVl2/zreWgHTUoBaAhHQJOACo/A0sR1fZQoaAZHQD43C/GlyipoB00KAWgIR0CTgCaUiY9gdX2UKGgGR0Bs9F4eLehxaAdNewFoCEdAk4GYp6QeWHV9lChoBkdAcjne4Cp3o2gHTXYBaAhHQJOByH/Lkjp1fZQoaAZHQG/N+Haews5oB015AWgIR0CTg1ZeiSJTdX2UKGgGR0Bwea4ZuQ6qaAdNawFoCEdAk4OH1vl2eXV9lChoBkdAceFCF9KEnWgHTUkBaAhHQJOD781n/T91fZQoaAZHQHFHYMWoFV1oB01SAWgIR0CTh5NWEK3NdX2UKGgGR0BHHx6OYIBzaAdL52gIR0CTh+A6dUbUdX2UKGgGR0BEberU9ZA6aAdNCAFoCEdAk4grBGhEjXV9lChoBkdAauGMdcSoO2gHTWABaAhHQJOJe+ZgG8p1fZQoaAZHQGrKBgNPP9loB01+AWgIR0CTifLgXMyKdX2UKGgGR0BsTKDXe3x4aAdNVQFoCEdAk4odbcGke3V9lChoBkdAcSYii7Ciy2gHTTUBaAhHQJOKdQMx46h1fZQoaAZHQHA1Iikfs/poB01oAWgIR0CTiq4j8k2QdX2UKGgGR0BxtBybQTmGaAdNeQFoCEdAk4rE21lXinV9lChoBkdAcWR/iYLLIWgHTXEBaAhHQJOLhzYEnst1fZQoaAZHQHI+YHC4z8BoB00kAWgIR0CTi/TmnwXqdX2UKGgGR0BSh+TmnwXqaAdL9mgIR0CTjNinpB5YdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |