Delete weights/graphcast/README.md
Browse files- weights/graphcast/README.md +0 -54
weights/graphcast/README.md
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
- zh
|
6 |
-
metrics:
|
7 |
-
- accuracy
|
8 |
-
tags:
|
9 |
-
- climate
|
10 |
-
---
|
11 |
-
|
12 |
-
# OpenCastKit: an open-source solutions of global data-driven high-resolution weather forecasting
|
13 |
-
|
14 |
-
This is an open-source solutions of global data-driven high-resolution weather forecasting, implemented and improved by [High-Flyer AI](https://www.high-flyer.cn/). It can compare with the ECMWF Integrated Forecasting System (IFS).
|
15 |
-
|
16 |
-
See also: [Github repository](https://github.com/HFAiLab/OpenCastKit) and [High-flyer AI's blog](https://www.high-flyer.cn/blog/opencast/)
|
17 |
-
|
18 |
-
Several cases:
|
19 |
-
|
20 |
-
![Typhoon track comparison](./pic/wind_small.gif)
|
21 |
-
|
22 |
-
![Water vapour comparison](./pic/precipitation_small.gif)
|
23 |
-
|
24 |
-
For more cases about FourCastNet/GraphCast prediction, please have a look at [HF-Earth](https://www.high-flyer.cn/hf-earth/), a daily updated demo released by [High-Flyer AI](https://www.high-flyer.cn/en/).
|
25 |
-
|
26 |
-
## Inference
|
27 |
-
|
28 |
-
### FourCastNet
|
29 |
-
|
30 |
-
You can load the weights `backbone.pt` and `precipitation.pt` to generate weather predictions, as shown in the following pseudocode. The complete code is released at `./infer2img.py`.
|
31 |
-
|
32 |
-
```python
|
33 |
-
import xarray as xr
|
34 |
-
import cartopy.crs as ccrs
|
35 |
-
from afnonet import AFNONet # download the code from https://github.com/HFAiLab/OpenCastKit/blob/master/model/afnonet.py
|
36 |
-
|
37 |
-
backbone_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=20, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
38 |
-
backbone_model.load('./weights/fourcastnet/backbone.pt')
|
39 |
-
precip_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=1, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
40 |
-
precip_model.load('./weights/fourcastnet/precipitation.pt')
|
41 |
-
|
42 |
-
input_x = get_data('2023-01-01 00:00:00')
|
43 |
-
|
44 |
-
pred_x = backbone_model(input_x) # input Xt, output Xt+1
|
45 |
-
pred_p = precip_model(pred_x) # input Xt+1, output Pt+1
|
46 |
-
|
47 |
-
plot_data = xr.Dataset([pred_x, pred_p])
|
48 |
-
ax = plt.axes(projection=ccrs.PlateCarree())
|
49 |
-
plot_data.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False, add_labels=False, rasterized=True)
|
50 |
-
ax.coastlines(resolution='110m')
|
51 |
-
plt.savefig('img.png')
|
52 |
-
```
|
53 |
-
|
54 |
-
FourCastNet can predict 7 surface variables, plus 5 atmospheric variables at each of 3 or 4 pressure levels, for 21 variables total. The details of these variables follow the [paper](https://arxiv.org/abs/2202.11214).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|