File size: 7,691 Bytes
b310f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from functools import partial
from datetime import datetime, timedelta
from pathlib import Path
import pickle
import dask
import dask.array as da
import cartopy
import cartopy.crs as ccrs
import xarray as xr
import xarray.ufuncs as xu
import matplotlib.pyplot as plt
from model.afnonet import AFNONet # download the model code from https://github.com/HFAiLab/FourCastNet/blob/master/model/afnonet.py
DATANAMES = ['10m_u_component_of_wind', '10m_v_component_of_wind', '2m_temperature',
'geopotential@1000', 'geopotential@50', 'geopotential@500', 'geopotential@850',
'mean_sea_level_pressure', 'relative_humidity@500', 'relative_humidity@850',
'surface_pressure', 'temperature@500', 'temperature@850', 'total_column_water_vapour',
'u_component_of_wind@1000', 'u_component_of_wind@500', 'u_component_of_wind@850',
'v_component_of_wind@1000', 'v_component_of_wind@500', 'v_component_of_wind@850',
'total_precipitation']
DATAMAP = {
'geopotential': 'z',
'relative_humidity': 'r',
'temperature': 't',
'u_component_of_wind': 'u',
'v_component_of_wind': 'v'
}
def load_model():
# input size
h, w = 720, 1440
x_c, y_c, p_c = 20, 20, 1
backbone_model = AFNONet(img_size=[h, w], in_chans=x_c, out_chans=y_c, norm_layer=partial(nn.LayerNorm, eps=1e-6))
ckpt = torch.load('./backbone.pt', map_location="cpu")
backbone_model.load_state_dict(ckpt['model'])
precip_model = AFNONet(img_size=[h, w], in_chans=x_c, out_chans=p_c, norm_layer=partial(nn.LayerNorm, eps=1e-6))
ckpt = torch.load('./precipitation.pt', map_location="cpu")
precip_model.load_state_dict(ckpt['model'])
def imcol(data, img_path, img_name, **kwargs):
fig = plt.figure(figsize=(20, 10))
ax = plt.axes(projection=ccrs.PlateCarree())
I = data.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False, add_labels=False, rasterized=True, **kwargs)
ax.coastlines(resolution='110m')
dirname = f'{img_path.absolute()}/{img_name}.jpg'
plt.axis('off')
plt.savefig(dirname, bbox_inches='tight', pad_inches=0.)
plt.close(fig)
def plot(real_data, pred_data, save_path):
cmap_t = 'RdYlBu_r'
wind = xu.sqrt(real_data['u10'] ** 2 + real_data['v10'] ** 2)
wmin, wmax = wind.values.min(), wind.values.max()
wind = xu.sqrt(pred_data['u10'] ** 2 + pred_data['v10'] ** 2)
wmin, wmax = min(wind.values.min(), wmin), max(wind.values.max(), wmax)
pmin, pmax = real_data['tp'].values.min(), real_data['tp'].values.max()
pmin, pmax = min(pred_data['tp'].values.min(), pmin), max(pred_data['tp'].values.max(), pmax)
tmin, tmax = real_data['t2m'].values.min(), real_data['t2m'].values.max()
tmin, tmax = min(pred_data['t2m'].values.min(), tmin), max(pred_data['t2m'].values.max(), tmax)
for i in range(len(real_data.time)):
u = real_data['u10'].isel(time=i)
v = real_data['v10'].isel(time=i)
wind = xu.sqrt(u ** 2 + v ** 2)
precip = real_data['tp'].isel(time=i)
temp = real_data['t2m'].isel(time=i)
datetime = pd.to_datetime(str(wind['time'].values))
datetime = datetime.strftime('%Y-%m-%d %H:%M:%S')
print(f'plot {datetime}')
imcol(wind, save_path, img_name=f'wind_{datetime}_real', cmap=cmap_t, vmin=wmin, vmax=wmax),
imcol(precip, save_path, img_name=f'precipitation_{datetime}_real', cmap=cmap_t, vmin=pmin, vmax=pmax),
imcol(temp, save_path, img_name=f'temperature_{datetime}_real', cmap=cmap_t, vmin=tmin, vmax=tmax)
for i in range(len(pred_data.time)):
u = pred_data['u10'].isel(time=i)
v = pred_data['v10'].isel(time=i)
wind = xu.sqrt(u ** 2 + v ** 2)
precip = pred_data['tp'].isel(time=i)
temp = pred_data['t2m'].isel(time=i)
datetime = pd.to_datetime(str(wind['time'].values))
datetime = datetime.strftime('%Y-%m-%d %H:%M:%S')
print(f'plot {datetime}')
imcol(wind, save_path, img_name=f'wind_{datetime}_pred', cmap=cmap_t, vmin=wmin, vmax=wmax),
imcol(precip, save_path, img_name=f'precipitation_{datetime}_pred', cmap=cmap_t, vmin=pmin, vmax=pmax),
imcol(temp, save_path, img_name=f'temperature_{datetime}_pred', cmap=cmap_t, vmin=tmin, vmax=tmax)
def get_pred(sample, scaler, times=None, latitude=None, longitude=None):
backbone_model, precip_model = load_model()
sample = torch.from_numpy(sample[0])
sample = sample.float()
backbone_model.eval()
precip_model.eval()
pred = []
x = sample.unsqueeze(0).transpose(3, 2).transpose(2, 1)
for i in range(len(times)):
print(f"predict {times[i]}")
with torch.cuda.amp.autocast():
x = backbone_model(x)
tmp = x.transpose(1, 2).transpose(2, 3)
p = precip_model(x)
tmp = tmp.detach().numpy()[0, :, :, :3] * scaler['std'][:3] + scaler['mean'][:3]
p = p.detach().numpy()[0, 0, :, :, np.newaxis] * scaler['std'][-1] + scaler['mean'][-1]
tmp = np.concatenate([tmp, p], axis=-1)
pred.append(tmp)
pred = np.asarray(pred)
pred_data = xr.Dataset({
'u10': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 0], chunks=(7, 720, 1440))),
'v10': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 1], chunks=(7, 720, 1440))),
't2m': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 2], chunks=(7, 720, 1440))),
'tp': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 3], chunks=(7, 720, 1440))),
},
coords={'time': (['time'], times),
'latitude': (['latitude'], latitude),
'longitude': (['longitude'], longitude)
}
)
return pred_data
def get_data(start_time, end_time):
times = slice(start_time, end_time)
with open(f'./scaler.pkl', "rb") as f: # the mean and std of each atmospheric variables
scaler = pickle.load(f)
# load weather data
datas = []
for file in DATANAMES:
tmp = xr.open_mfdataset(f'./ERA5_rawdata/{file}/*.nc', combine='by_coords').sel(time=times)
if '@' in file:
k, v = file.split('@')
tmp = tmp.rename_vars({DATAMAP[k]: f'{DATAMAP[k]}@{v}'})
datas.append(tmp)
with dask.config.set(**{'array.slicing.split_large_chunks': False}):
raw_data = xr.merge(datas, compat="identical", join="inner")
data = []
for name in ['u10', 'v10', 't2m', 'z@1000', 'z@50', 'z@500', 'z@850', 'msl', 'r@500', 'r@850', 'sp', 't@500', 't@850', 'tcwv', 'u@1000', 'u@500', 'u@850', 'v@1000', 'v@500', 'v@850']:
raw = raw_data[name].values
data.append(raw)
data = np.stack(data, axis=-1)
data = (data - scaler['mean']) / scaler['std']
data = data[:, 1:, :, :] # 721*1440 -> 720*1440
return raw_data[['u10', 'v10', 't2m', 'tp']].sel(expver=1), data, scaler
if __name__ == '__main__':
start_time = datetime(2023, 1, 1, 0, 0)
end_time = datetime(2023, 1, 5, 18, 0)
num = int((end_time - start_time) / timedelta(hours=6))
print(f"start_time: {start_time}, end_time: {end_time}, pred_num: {num}")
real_data, sample, scaler = get_data(start_time)
print(sample.shape)
pred_times = [start_time + timedelta(hours=6) * i for i in range(1, num)]
pred = get_pred(sample, scaler=scaler, times=pred_times, latitude=real_data.latitude[1:], longitude=real_data.longitude)
save_path = Path(f"./output/")
save_path.mkdir(parents=True, exist_ok=True)
plot(real_data, pred, save_path) |