Delete models.py
Browse files
models.py
DELETED
@@ -1,372 +0,0 @@
|
|
1 |
-
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
-
from istftnet import AdaIN1d, Decoder
|
3 |
-
from munch import Munch
|
4 |
-
from pathlib import Path
|
5 |
-
from plbert import load_plbert
|
6 |
-
from torch.nn.utils import weight_norm, spectral_norm
|
7 |
-
import json
|
8 |
-
import numpy as np
|
9 |
-
import os
|
10 |
-
import os.path as osp
|
11 |
-
import torch
|
12 |
-
import torch.nn as nn
|
13 |
-
import torch.nn.functional as F
|
14 |
-
|
15 |
-
class LinearNorm(torch.nn.Module):
|
16 |
-
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
17 |
-
super(LinearNorm, self).__init__()
|
18 |
-
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
19 |
-
|
20 |
-
torch.nn.init.xavier_uniform_(
|
21 |
-
self.linear_layer.weight,
|
22 |
-
gain=torch.nn.init.calculate_gain(w_init_gain))
|
23 |
-
|
24 |
-
def forward(self, x):
|
25 |
-
return self.linear_layer(x)
|
26 |
-
|
27 |
-
class LayerNorm(nn.Module):
|
28 |
-
def __init__(self, channels, eps=1e-5):
|
29 |
-
super().__init__()
|
30 |
-
self.channels = channels
|
31 |
-
self.eps = eps
|
32 |
-
|
33 |
-
self.gamma = nn.Parameter(torch.ones(channels))
|
34 |
-
self.beta = nn.Parameter(torch.zeros(channels))
|
35 |
-
|
36 |
-
def forward(self, x):
|
37 |
-
x = x.transpose(1, -1)
|
38 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
39 |
-
return x.transpose(1, -1)
|
40 |
-
|
41 |
-
class TextEncoder(nn.Module):
|
42 |
-
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
43 |
-
super().__init__()
|
44 |
-
self.embedding = nn.Embedding(n_symbols, channels)
|
45 |
-
|
46 |
-
padding = (kernel_size - 1) // 2
|
47 |
-
self.cnn = nn.ModuleList()
|
48 |
-
for _ in range(depth):
|
49 |
-
self.cnn.append(nn.Sequential(
|
50 |
-
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
51 |
-
LayerNorm(channels),
|
52 |
-
actv,
|
53 |
-
nn.Dropout(0.2),
|
54 |
-
))
|
55 |
-
# self.cnn = nn.Sequential(*self.cnn)
|
56 |
-
|
57 |
-
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
58 |
-
|
59 |
-
def forward(self, x, input_lengths, m):
|
60 |
-
x = self.embedding(x) # [B, T, emb]
|
61 |
-
x = x.transpose(1, 2) # [B, emb, T]
|
62 |
-
m = m.to(input_lengths.device).unsqueeze(1)
|
63 |
-
x.masked_fill_(m, 0.0)
|
64 |
-
|
65 |
-
for c in self.cnn:
|
66 |
-
x = c(x)
|
67 |
-
x.masked_fill_(m, 0.0)
|
68 |
-
|
69 |
-
x = x.transpose(1, 2) # [B, T, chn]
|
70 |
-
|
71 |
-
input_lengths = input_lengths.cpu().numpy()
|
72 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
73 |
-
x, input_lengths, batch_first=True, enforce_sorted=False)
|
74 |
-
|
75 |
-
self.lstm.flatten_parameters()
|
76 |
-
x, _ = self.lstm(x)
|
77 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
78 |
-
x, batch_first=True)
|
79 |
-
|
80 |
-
x = x.transpose(-1, -2)
|
81 |
-
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
82 |
-
|
83 |
-
x_pad[:, :, :x.shape[-1]] = x
|
84 |
-
x = x_pad.to(x.device)
|
85 |
-
|
86 |
-
x.masked_fill_(m, 0.0)
|
87 |
-
|
88 |
-
return x
|
89 |
-
|
90 |
-
def inference(self, x):
|
91 |
-
x = self.embedding(x)
|
92 |
-
x = x.transpose(1, 2)
|
93 |
-
x = self.cnn(x)
|
94 |
-
x = x.transpose(1, 2)
|
95 |
-
self.lstm.flatten_parameters()
|
96 |
-
x, _ = self.lstm(x)
|
97 |
-
return x
|
98 |
-
|
99 |
-
def length_to_mask(self, lengths):
|
100 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
101 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
102 |
-
return mask
|
103 |
-
|
104 |
-
|
105 |
-
class UpSample1d(nn.Module):
|
106 |
-
def __init__(self, layer_type):
|
107 |
-
super().__init__()
|
108 |
-
self.layer_type = layer_type
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
if self.layer_type == 'none':
|
112 |
-
return x
|
113 |
-
else:
|
114 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
115 |
-
|
116 |
-
class AdainResBlk1d(nn.Module):
|
117 |
-
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
118 |
-
upsample='none', dropout_p=0.0):
|
119 |
-
super().__init__()
|
120 |
-
self.actv = actv
|
121 |
-
self.upsample_type = upsample
|
122 |
-
self.upsample = UpSample1d(upsample)
|
123 |
-
self.learned_sc = dim_in != dim_out
|
124 |
-
self._build_weights(dim_in, dim_out, style_dim)
|
125 |
-
self.dropout = nn.Dropout(dropout_p)
|
126 |
-
|
127 |
-
if upsample == 'none':
|
128 |
-
self.pool = nn.Identity()
|
129 |
-
else:
|
130 |
-
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
131 |
-
|
132 |
-
|
133 |
-
def _build_weights(self, dim_in, dim_out, style_dim):
|
134 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
135 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
136 |
-
self.norm1 = AdaIN1d(style_dim, dim_in)
|
137 |
-
self.norm2 = AdaIN1d(style_dim, dim_out)
|
138 |
-
if self.learned_sc:
|
139 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
140 |
-
|
141 |
-
def _shortcut(self, x):
|
142 |
-
x = self.upsample(x)
|
143 |
-
if self.learned_sc:
|
144 |
-
x = self.conv1x1(x)
|
145 |
-
return x
|
146 |
-
|
147 |
-
def _residual(self, x, s):
|
148 |
-
x = self.norm1(x, s)
|
149 |
-
x = self.actv(x)
|
150 |
-
x = self.pool(x)
|
151 |
-
x = self.conv1(self.dropout(x))
|
152 |
-
x = self.norm2(x, s)
|
153 |
-
x = self.actv(x)
|
154 |
-
x = self.conv2(self.dropout(x))
|
155 |
-
return x
|
156 |
-
|
157 |
-
def forward(self, x, s):
|
158 |
-
out = self._residual(x, s)
|
159 |
-
out = (out + self._shortcut(x)) / np.sqrt(2)
|
160 |
-
return out
|
161 |
-
|
162 |
-
class AdaLayerNorm(nn.Module):
|
163 |
-
def __init__(self, style_dim, channels, eps=1e-5):
|
164 |
-
super().__init__()
|
165 |
-
self.channels = channels
|
166 |
-
self.eps = eps
|
167 |
-
|
168 |
-
self.fc = nn.Linear(style_dim, channels*2)
|
169 |
-
|
170 |
-
def forward(self, x, s):
|
171 |
-
x = x.transpose(-1, -2)
|
172 |
-
x = x.transpose(1, -1)
|
173 |
-
|
174 |
-
h = self.fc(s)
|
175 |
-
h = h.view(h.size(0), h.size(1), 1)
|
176 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
177 |
-
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
178 |
-
|
179 |
-
|
180 |
-
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
181 |
-
x = (1 + gamma) * x + beta
|
182 |
-
return x.transpose(1, -1).transpose(-1, -2)
|
183 |
-
|
184 |
-
class ProsodyPredictor(nn.Module):
|
185 |
-
|
186 |
-
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
187 |
-
super().__init__()
|
188 |
-
|
189 |
-
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
190 |
-
d_model=d_hid,
|
191 |
-
nlayers=nlayers,
|
192 |
-
dropout=dropout)
|
193 |
-
|
194 |
-
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
195 |
-
self.duration_proj = LinearNorm(d_hid, max_dur)
|
196 |
-
|
197 |
-
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
198 |
-
self.F0 = nn.ModuleList()
|
199 |
-
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
200 |
-
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
201 |
-
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
202 |
-
|
203 |
-
self.N = nn.ModuleList()
|
204 |
-
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
205 |
-
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
206 |
-
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
207 |
-
|
208 |
-
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
209 |
-
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
210 |
-
|
211 |
-
|
212 |
-
def forward(self, texts, style, text_lengths, alignment, m):
|
213 |
-
d = self.text_encoder(texts, style, text_lengths, m)
|
214 |
-
|
215 |
-
batch_size = d.shape[0]
|
216 |
-
text_size = d.shape[1]
|
217 |
-
|
218 |
-
# predict duration
|
219 |
-
input_lengths = text_lengths.cpu().numpy()
|
220 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
221 |
-
d, input_lengths, batch_first=True, enforce_sorted=False)
|
222 |
-
|
223 |
-
m = m.to(text_lengths.device).unsqueeze(1)
|
224 |
-
|
225 |
-
self.lstm.flatten_parameters()
|
226 |
-
x, _ = self.lstm(x)
|
227 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
228 |
-
x, batch_first=True)
|
229 |
-
|
230 |
-
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
231 |
-
|
232 |
-
x_pad[:, :x.shape[1], :] = x
|
233 |
-
x = x_pad.to(x.device)
|
234 |
-
|
235 |
-
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
236 |
-
|
237 |
-
en = (d.transpose(-1, -2) @ alignment)
|
238 |
-
|
239 |
-
return duration.squeeze(-1), en
|
240 |
-
|
241 |
-
def F0Ntrain(self, x, s):
|
242 |
-
x, _ = self.shared(x.transpose(-1, -2))
|
243 |
-
|
244 |
-
F0 = x.transpose(-1, -2)
|
245 |
-
for block in self.F0:
|
246 |
-
F0 = block(F0, s)
|
247 |
-
F0 = self.F0_proj(F0)
|
248 |
-
|
249 |
-
N = x.transpose(-1, -2)
|
250 |
-
for block in self.N:
|
251 |
-
N = block(N, s)
|
252 |
-
N = self.N_proj(N)
|
253 |
-
|
254 |
-
return F0.squeeze(1), N.squeeze(1)
|
255 |
-
|
256 |
-
def length_to_mask(self, lengths):
|
257 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
258 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
259 |
-
return mask
|
260 |
-
|
261 |
-
class DurationEncoder(nn.Module):
|
262 |
-
|
263 |
-
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
264 |
-
super().__init__()
|
265 |
-
self.lstms = nn.ModuleList()
|
266 |
-
for _ in range(nlayers):
|
267 |
-
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
268 |
-
d_model // 2,
|
269 |
-
num_layers=1,
|
270 |
-
batch_first=True,
|
271 |
-
bidirectional=True,
|
272 |
-
dropout=dropout))
|
273 |
-
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
274 |
-
|
275 |
-
|
276 |
-
self.dropout = dropout
|
277 |
-
self.d_model = d_model
|
278 |
-
self.sty_dim = sty_dim
|
279 |
-
|
280 |
-
def forward(self, x, style, text_lengths, m):
|
281 |
-
masks = m.to(text_lengths.device)
|
282 |
-
|
283 |
-
x = x.permute(2, 0, 1)
|
284 |
-
s = style.expand(x.shape[0], x.shape[1], -1)
|
285 |
-
x = torch.cat([x, s], axis=-1)
|
286 |
-
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
287 |
-
|
288 |
-
x = x.transpose(0, 1)
|
289 |
-
input_lengths = text_lengths.cpu().numpy()
|
290 |
-
x = x.transpose(-1, -2)
|
291 |
-
|
292 |
-
for block in self.lstms:
|
293 |
-
if isinstance(block, AdaLayerNorm):
|
294 |
-
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
295 |
-
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
296 |
-
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
297 |
-
else:
|
298 |
-
x = x.transpose(-1, -2)
|
299 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
300 |
-
x, input_lengths, batch_first=True, enforce_sorted=False)
|
301 |
-
block.flatten_parameters()
|
302 |
-
x, _ = block(x)
|
303 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
304 |
-
x, batch_first=True)
|
305 |
-
x = F.dropout(x, p=self.dropout, training=self.training)
|
306 |
-
x = x.transpose(-1, -2)
|
307 |
-
|
308 |
-
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
309 |
-
|
310 |
-
x_pad[:, :, :x.shape[-1]] = x
|
311 |
-
x = x_pad.to(x.device)
|
312 |
-
|
313 |
-
return x.transpose(-1, -2)
|
314 |
-
|
315 |
-
def inference(self, x, style):
|
316 |
-
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
317 |
-
style = style.expand(x.shape[0], x.shape[1], -1)
|
318 |
-
x = torch.cat([x, style], axis=-1)
|
319 |
-
src = self.pos_encoder(x)
|
320 |
-
output = self.transformer_encoder(src).transpose(0, 1)
|
321 |
-
return output
|
322 |
-
|
323 |
-
def length_to_mask(self, lengths):
|
324 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
325 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
326 |
-
return mask
|
327 |
-
|
328 |
-
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
329 |
-
def recursive_munch(d):
|
330 |
-
if isinstance(d, dict):
|
331 |
-
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
332 |
-
elif isinstance(d, list):
|
333 |
-
return [recursive_munch(v) for v in d]
|
334 |
-
else:
|
335 |
-
return d
|
336 |
-
|
337 |
-
def build_model(path, device):
|
338 |
-
config = Path(__file__).parent / 'config.json'
|
339 |
-
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
340 |
-
with open(config, 'r') as r:
|
341 |
-
args = recursive_munch(json.load(r))
|
342 |
-
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
343 |
-
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
344 |
-
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
345 |
-
upsample_rates = args.decoder.upsample_rates,
|
346 |
-
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
347 |
-
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
348 |
-
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
349 |
-
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
350 |
-
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
351 |
-
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
352 |
-
bert = load_plbert()
|
353 |
-
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
354 |
-
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
355 |
-
for child in parent.children():
|
356 |
-
if isinstance(child, nn.RNNBase):
|
357 |
-
child.flatten_parameters()
|
358 |
-
model = Munch(
|
359 |
-
bert=bert.to(device).eval(),
|
360 |
-
bert_encoder=bert_encoder.to(device).eval(),
|
361 |
-
predictor=predictor.to(device).eval(),
|
362 |
-
decoder=decoder.to(device).eval(),
|
363 |
-
text_encoder=text_encoder.to(device).eval(),
|
364 |
-
)
|
365 |
-
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
366 |
-
assert key in model, key
|
367 |
-
try:
|
368 |
-
model[key].load_state_dict(state_dict)
|
369 |
-
except:
|
370 |
-
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
371 |
-
model[key].load_state_dict(state_dict, strict=False)
|
372 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|