henilp105 commited on
Commit
85ffacf
·
verified ·
1 Parent(s): 1d954ee

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d612e15f55999c6a227ebf07288e0f48cdba71db6ce47ba871b73bcb7c116356
3
+ size 16794200
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52009c94247dfb026804c2bdcea609c03eef29d05333278db627b2de60917c8
3
+ size 33630266
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3bee608bccf720d1f8a1cf1f5605dc8581ecae741b97cce5adea0c59b58117c
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:193fd7696f4050db882ed979f43f74654a2702263893d6e614bd950ee15e7a6b
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 4096,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1175,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0425531914893617,
13
+ "grad_norm": 0.4270687699317932,
14
+ "learning_rate": 0.00019999602855426865,
15
+ "loss": 1.013,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0851063829787234,
20
+ "grad_norm": 0.4152718782424927,
21
+ "learning_rate": 0.00019998411453252217,
22
+ "loss": 0.8289,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.1276595744680851,
27
+ "grad_norm": 0.7277560234069824,
28
+ "learning_rate": 0.0001999642588810784,
29
+ "loss": 0.5959,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.1702127659574468,
34
+ "grad_norm": 0.5505673885345459,
35
+ "learning_rate": 0.00019993646317705016,
36
+ "loss": 0.459,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.2127659574468085,
41
+ "grad_norm": 0.528052031993866,
42
+ "learning_rate": 0.00019990072962822007,
43
+ "loss": 0.3775,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.2553191489361702,
48
+ "grad_norm": 0.6307681202888489,
49
+ "learning_rate": 0.00019985706107286514,
50
+ "loss": 0.3285,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2978723404255319,
55
+ "grad_norm": 0.6954013109207153,
56
+ "learning_rate": 0.00019980546097953132,
57
+ "loss": 0.2855,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.3404255319148936,
62
+ "grad_norm": 0.6790465116500854,
63
+ "learning_rate": 0.000199745933446758,
64
+ "loss": 0.2782,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3829787234042553,
69
+ "grad_norm": 1.324937105178833,
70
+ "learning_rate": 0.0001996784832027525,
71
+ "loss": 0.2635,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.425531914893617,
76
+ "grad_norm": 0.8779314756393433,
77
+ "learning_rate": 0.00019960311560501454,
78
+ "loss": 0.1861,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.46808510638297873,
83
+ "grad_norm": 0.693745493888855,
84
+ "learning_rate": 0.00019951983663991056,
85
+ "loss": 0.2001,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.5106382978723404,
90
+ "grad_norm": 1.0649502277374268,
91
+ "learning_rate": 0.00019942865292219838,
92
+ "loss": 0.1378,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.5531914893617021,
97
+ "grad_norm": 0.6962260007858276,
98
+ "learning_rate": 0.0001993295716945017,
99
+ "loss": 0.1579,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5957446808510638,
104
+ "grad_norm": 0.7934479713439941,
105
+ "learning_rate": 0.00019922260082673497,
106
+ "loss": 0.092,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.6382978723404256,
111
+ "grad_norm": 1.1331907510757446,
112
+ "learning_rate": 0.000199107748815478,
113
+ "loss": 0.1208,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.6808510638297872,
118
+ "grad_norm": 1.3689247369766235,
119
+ "learning_rate": 0.00019898502478330152,
120
+ "loss": 0.0874,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.723404255319149,
125
+ "grad_norm": 0.5304535031318665,
126
+ "learning_rate": 0.00019885443847804211,
127
+ "loss": 0.0881,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.7659574468085106,
132
+ "grad_norm": 0.6805845499038696,
133
+ "learning_rate": 0.0001987160002720283,
134
+ "loss": 0.0584,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.8085106382978723,
139
+ "grad_norm": 0.2527499198913574,
140
+ "learning_rate": 0.00019856972116125653,
141
+ "loss": 0.08,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.851063829787234,
146
+ "grad_norm": 0.799462616443634,
147
+ "learning_rate": 0.0001984156127645178,
148
+ "loss": 0.0556,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.8936170212765957,
153
+ "grad_norm": 0.936975359916687,
154
+ "learning_rate": 0.0001982536873224748,
155
+ "loss": 0.0945,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.9361702127659575,
160
+ "grad_norm": 0.8067993521690369,
161
+ "learning_rate": 0.00019808395769668963,
162
+ "loss": 0.0495,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.9787234042553191,
167
+ "grad_norm": 0.45767834782600403,
168
+ "learning_rate": 0.00019790643736860227,
169
+ "loss": 0.0617,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 1.0212765957446808,
174
+ "grad_norm": 0.9198794364929199,
175
+ "learning_rate": 0.00019772114043845965,
176
+ "loss": 0.0467,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 1.0638297872340425,
181
+ "grad_norm": 0.7327796816825867,
182
+ "learning_rate": 0.0001975280816241959,
183
+ "loss": 0.0391,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 1.1063829787234043,
188
+ "grad_norm": 0.8003076910972595,
189
+ "learning_rate": 0.00019732727626026305,
190
+ "loss": 0.0428,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 1.148936170212766,
195
+ "grad_norm": 0.10251367837190628,
196
+ "learning_rate": 0.0001971187402964132,
197
+ "loss": 0.032,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 1.1914893617021276,
202
+ "grad_norm": 0.45093855261802673,
203
+ "learning_rate": 0.00019690249029643162,
204
+ "loss": 0.0673,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 1.2340425531914894,
209
+ "grad_norm": 0.4845767915248871,
210
+ "learning_rate": 0.0001966785434368211,
211
+ "loss": 0.033,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 1.2765957446808511,
216
+ "grad_norm": 0.31195056438446045,
217
+ "learning_rate": 0.00019644691750543767,
218
+ "loss": 0.0261,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 1.3191489361702127,
223
+ "grad_norm": 0.14839951694011688,
224
+ "learning_rate": 0.00019620763090007762,
225
+ "loss": 0.0298,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 1.3617021276595744,
230
+ "grad_norm": 0.20573872327804565,
231
+ "learning_rate": 0.00019596070262701626,
232
+ "loss": 0.0155,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 1.4042553191489362,
237
+ "grad_norm": 0.47702595591545105,
238
+ "learning_rate": 0.00019570615229949842,
239
+ "loss": 0.0369,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 1.4468085106382977,
244
+ "grad_norm": 0.7073186039924622,
245
+ "learning_rate": 0.00019544400013618023,
246
+ "loss": 0.0302,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 1.4893617021276595,
251
+ "grad_norm": 0.1539478451013565,
252
+ "learning_rate": 0.00019517426695952358,
253
+ "loss": 0.0223,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 1.5319148936170213,
258
+ "grad_norm": 0.5202814340591431,
259
+ "learning_rate": 0.00019489697419414182,
260
+ "loss": 0.0263,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 1.574468085106383,
265
+ "grad_norm": 0.968192458152771,
266
+ "learning_rate": 0.00019461214386509842,
267
+ "loss": 0.044,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 1.6170212765957448,
272
+ "grad_norm": 0.5662522912025452,
273
+ "learning_rate": 0.00019431979859615726,
274
+ "loss": 0.0421,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 1.6595744680851063,
279
+ "grad_norm": 0.42925137281417847,
280
+ "learning_rate": 0.00019401996160798573,
281
+ "loss": 0.0606,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 1.702127659574468,
286
+ "grad_norm": 0.5803830027580261,
287
+ "learning_rate": 0.00019371265671631037,
288
+ "loss": 0.0392,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 1.7446808510638299,
293
+ "grad_norm": 0.4235450327396393,
294
+ "learning_rate": 0.00019339790833002515,
295
+ "loss": 0.0286,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 1.7872340425531914,
300
+ "grad_norm": 0.519207775592804,
301
+ "learning_rate": 0.00019307574144925287,
302
+ "loss": 0.0522,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 1.8297872340425532,
307
+ "grad_norm": 0.2344844490289688,
308
+ "learning_rate": 0.00019274618166335912,
309
+ "loss": 0.0281,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 1.872340425531915,
314
+ "grad_norm": 0.1990007758140564,
315
+ "learning_rate": 0.00019240925514892,
316
+ "loss": 0.0229,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 1.9148936170212765,
321
+ "grad_norm": 0.10929415374994278,
322
+ "learning_rate": 0.00019206498866764288,
323
+ "loss": 0.0258,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 1.9574468085106385,
328
+ "grad_norm": 0.4308103024959564,
329
+ "learning_rate": 0.00019171340956424074,
330
+ "loss": 0.0167,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 2.0,
335
+ "grad_norm": 0.46525439620018005,
336
+ "learning_rate": 0.0001913545457642601,
337
+ "loss": 0.0283,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 2.0425531914893615,
342
+ "grad_norm": 0.28837406635284424,
343
+ "learning_rate": 0.00019098842577186314,
344
+ "loss": 0.0137,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 2.0851063829787235,
349
+ "grad_norm": 0.08533861488103867,
350
+ "learning_rate": 0.00019061507866756347,
351
+ "loss": 0.0182,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 2.127659574468085,
356
+ "grad_norm": 0.3499375581741333,
357
+ "learning_rate": 0.00019023453410591635,
358
+ "loss": 0.0221,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 2.1702127659574466,
363
+ "grad_norm": 0.07716694474220276,
364
+ "learning_rate": 0.00018984682231316333,
365
+ "loss": 0.0075,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 2.2127659574468086,
370
+ "grad_norm": 0.3093757927417755,
371
+ "learning_rate": 0.00018945197408483123,
372
+ "loss": 0.0133,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 2.25531914893617,
377
+ "grad_norm": 0.13492655754089355,
378
+ "learning_rate": 0.00018905002078328632,
379
+ "loss": 0.0184,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 2.297872340425532,
384
+ "grad_norm": 0.07833054661750793,
385
+ "learning_rate": 0.000188640994335243,
386
+ "loss": 0.0109,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 2.3404255319148937,
391
+ "grad_norm": 0.08865915983915329,
392
+ "learning_rate": 0.0001882249272292282,
393
+ "loss": 0.0121,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 2.382978723404255,
398
+ "grad_norm": 0.31314581632614136,
399
+ "learning_rate": 0.00018780185251300046,
400
+ "loss": 0.0242,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 2.425531914893617,
405
+ "grad_norm": 0.10387410968542099,
406
+ "learning_rate": 0.00018737180379092537,
407
+ "loss": 0.0285,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 2.4680851063829787,
412
+ "grad_norm": 0.11755700409412384,
413
+ "learning_rate": 0.0001869348152213061,
414
+ "loss": 0.0281,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 2.5106382978723403,
419
+ "grad_norm": 0.1438552439212799,
420
+ "learning_rate": 0.0001864909215136705,
421
+ "loss": 0.0216,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 2.5531914893617023,
426
+ "grad_norm": 0.08940370380878448,
427
+ "learning_rate": 0.00018604015792601396,
428
+ "loss": 0.0226,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 2.595744680851064,
433
+ "grad_norm": 0.19193390011787415,
434
+ "learning_rate": 0.00018558256026199896,
435
+ "loss": 0.0184,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 2.6382978723404253,
440
+ "grad_norm": 0.4586654603481293,
441
+ "learning_rate": 0.00018511816486811134,
442
+ "loss": 0.0154,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 2.6808510638297873,
447
+ "grad_norm": 0.05811255797743797,
448
+ "learning_rate": 0.00018464700863077312,
449
+ "loss": 0.0238,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 2.723404255319149,
454
+ "grad_norm": 0.16280680894851685,
455
+ "learning_rate": 0.00018416912897341295,
456
+ "loss": 0.0253,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 2.7659574468085104,
461
+ "grad_norm": 0.07031189650297165,
462
+ "learning_rate": 0.00018368456385349334,
463
+ "loss": 0.0146,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 2.8085106382978724,
468
+ "grad_norm": 0.07851342856884003,
469
+ "learning_rate": 0.0001831933517594957,
470
+ "loss": 0.0301,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 2.851063829787234,
475
+ "grad_norm": 0.11461298912763596,
476
+ "learning_rate": 0.0001826955317078636,
477
+ "loss": 0.0155,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 2.8936170212765955,
482
+ "grad_norm": 0.1839868575334549,
483
+ "learning_rate": 0.00018219114323990345,
484
+ "loss": 0.0099,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 2.9361702127659575,
489
+ "grad_norm": 0.04199373722076416,
490
+ "learning_rate": 0.00018168022641864377,
491
+ "loss": 0.0192,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 2.978723404255319,
496
+ "grad_norm": 0.3203773498535156,
497
+ "learning_rate": 0.00018116282182565311,
498
+ "loss": 0.0272,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 3.021276595744681,
503
+ "grad_norm": 0.327921599149704,
504
+ "learning_rate": 0.0001806389705578168,
505
+ "loss": 0.0081,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 3.0638297872340425,
510
+ "grad_norm": 0.29155433177948,
511
+ "learning_rate": 0.00018010871422407236,
512
+ "loss": 0.0128,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 3.106382978723404,
517
+ "grad_norm": 0.06926452368497849,
518
+ "learning_rate": 0.00017957209494210493,
519
+ "loss": 0.0171,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 3.148936170212766,
524
+ "grad_norm": 0.08231089264154434,
525
+ "learning_rate": 0.0001790291553350016,
526
+ "loss": 0.0098,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 3.1914893617021276,
531
+ "grad_norm": 0.14707215130329132,
532
+ "learning_rate": 0.0001784799385278661,
533
+ "loss": 0.0092,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 3.2340425531914896,
538
+ "grad_norm": 0.2735896706581116,
539
+ "learning_rate": 0.00017792448814439333,
540
+ "loss": 0.0115,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 3.276595744680851,
545
+ "grad_norm": 0.44960370659828186,
546
+ "learning_rate": 0.00017736284830340436,
547
+ "loss": 0.0195,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 3.3191489361702127,
552
+ "grad_norm": 0.13413724303245544,
553
+ "learning_rate": 0.00017679506361534215,
554
+ "loss": 0.0187,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 3.3617021276595747,
559
+ "grad_norm": 0.24698686599731445,
560
+ "learning_rate": 0.00017622117917872823,
561
+ "loss": 0.0125,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 3.404255319148936,
566
+ "grad_norm": 0.48694342374801636,
567
+ "learning_rate": 0.00017564124057658056,
568
+ "loss": 0.0234,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 3.4468085106382977,
573
+ "grad_norm": 0.6931429505348206,
574
+ "learning_rate": 0.00017505529387279277,
575
+ "loss": 0.0234,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 3.4893617021276597,
580
+ "grad_norm": 0.13700473308563232,
581
+ "learning_rate": 0.00017446338560847568,
582
+ "loss": 0.0145,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 3.5319148936170213,
587
+ "grad_norm": 0.3254775404930115,
588
+ "learning_rate": 0.00017386556279826021,
589
+ "loss": 0.0179,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 3.574468085106383,
594
+ "grad_norm": 0.368379682302475,
595
+ "learning_rate": 0.00017326187292656333,
596
+ "loss": 0.013,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 3.617021276595745,
601
+ "grad_norm": 0.2745888829231262,
602
+ "learning_rate": 0.00017265236394381633,
603
+ "loss": 0.0136,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 3.6595744680851063,
608
+ "grad_norm": 0.0781714916229248,
609
+ "learning_rate": 0.00017203708426265614,
610
+ "loss": 0.0126,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 3.702127659574468,
615
+ "grad_norm": 0.7518234848976135,
616
+ "learning_rate": 0.00017141608275408006,
617
+ "loss": 0.0134,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 3.74468085106383,
622
+ "grad_norm": 0.4271518886089325,
623
+ "learning_rate": 0.00017078940874356392,
624
+ "loss": 0.0127,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 3.7872340425531914,
629
+ "grad_norm": 0.34387120604515076,
630
+ "learning_rate": 0.00017015711200714414,
631
+ "loss": 0.0161,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 3.829787234042553,
636
+ "grad_norm": 0.09641717374324799,
637
+ "learning_rate": 0.00016951924276746425,
638
+ "loss": 0.0185,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 3.872340425531915,
643
+ "grad_norm": 0.44215765595436096,
644
+ "learning_rate": 0.00016887585168978562,
645
+ "loss": 0.0115,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 3.9148936170212765,
650
+ "grad_norm": 0.06954783201217651,
651
+ "learning_rate": 0.0001682269898779632,
652
+ "loss": 0.0121,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 3.9574468085106385,
657
+ "grad_norm": 0.21080243587493896,
658
+ "learning_rate": 0.00016757270887038654,
659
+ "loss": 0.0125,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 4.0,
664
+ "grad_norm": 0.3382236063480377,
665
+ "learning_rate": 0.00016691306063588583,
666
+ "loss": 0.0109,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 4.042553191489362,
671
+ "grad_norm": 0.36123183369636536,
672
+ "learning_rate": 0.00016624809756960444,
673
+ "loss": 0.0093,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 4.085106382978723,
678
+ "grad_norm": 0.45228853821754456,
679
+ "learning_rate": 0.00016557787248883696,
680
+ "loss": 0.0117,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 4.127659574468085,
685
+ "grad_norm": 0.2724202275276184,
686
+ "learning_rate": 0.00016490243862883413,
687
+ "loss": 0.0126,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 4.170212765957447,
692
+ "grad_norm": 0.17904357612133026,
693
+ "learning_rate": 0.00016422184963857432,
694
+ "loss": 0.0103,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 4.212765957446808,
699
+ "grad_norm": 0.4267734885215759,
700
+ "learning_rate": 0.00016353615957650236,
701
+ "loss": 0.0105,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 4.25531914893617,
706
+ "grad_norm": 0.11816457659006119,
707
+ "learning_rate": 0.00016284542290623567,
708
+ "loss": 0.0097,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 4.297872340425532,
713
+ "grad_norm": 0.04166145250201225,
714
+ "learning_rate": 0.00016214969449223824,
715
+ "loss": 0.0116,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 4.340425531914893,
720
+ "grad_norm": 0.0687410831451416,
721
+ "learning_rate": 0.00016144902959546286,
722
+ "loss": 0.0088,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 4.382978723404255,
727
+ "grad_norm": 0.37416237592697144,
728
+ "learning_rate": 0.00016074348386896177,
729
+ "loss": 0.019,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 4.425531914893617,
734
+ "grad_norm": 0.06069188937544823,
735
+ "learning_rate": 0.00016003311335346636,
736
+ "loss": 0.0138,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 4.468085106382979,
741
+ "grad_norm": 0.0817495658993721,
742
+ "learning_rate": 0.00015931797447293552,
743
+ "loss": 0.0084,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 4.51063829787234,
748
+ "grad_norm": 0.09787007421255112,
749
+ "learning_rate": 0.00015859812403007443,
750
+ "loss": 0.009,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 4.553191489361702,
755
+ "grad_norm": 0.06179153174161911,
756
+ "learning_rate": 0.0001578736192018224,
757
+ "loss": 0.008,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 4.595744680851064,
762
+ "grad_norm": 0.3092339038848877,
763
+ "learning_rate": 0.00015714451753481168,
764
+ "loss": 0.0131,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 4.638297872340425,
769
+ "grad_norm": 0.06405780464410782,
770
+ "learning_rate": 0.0001564108769407962,
771
+ "loss": 0.0122,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 4.680851063829787,
776
+ "grad_norm": 0.21473410725593567,
777
+ "learning_rate": 0.00015567275569205218,
778
+ "loss": 0.0117,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 4.723404255319149,
783
+ "grad_norm": 0.3080317974090576,
784
+ "learning_rate": 0.00015493021241674918,
785
+ "loss": 0.011,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 4.76595744680851,
790
+ "grad_norm": 0.6501839756965637,
791
+ "learning_rate": 0.0001541833060942937,
792
+ "loss": 0.0124,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 4.808510638297872,
797
+ "grad_norm": 0.04628886282444,
798
+ "learning_rate": 0.00015343209605064422,
799
+ "loss": 0.0082,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 4.851063829787234,
804
+ "grad_norm": 0.059793177992105484,
805
+ "learning_rate": 0.00015267664195359917,
806
+ "loss": 0.0072,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 4.8936170212765955,
811
+ "grad_norm": 0.052162788808345795,
812
+ "learning_rate": 0.00015191700380805752,
813
+ "loss": 0.0095,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 4.9361702127659575,
818
+ "grad_norm": 0.06147542968392372,
819
+ "learning_rate": 0.00015115324195125274,
820
+ "loss": 0.0098,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 4.9787234042553195,
825
+ "grad_norm": 0.6586833000183105,
826
+ "learning_rate": 0.00015038541704796003,
827
+ "loss": 0.0139,
828
+ "step": 1170
829
+ }
830
+ ],
831
+ "logging_steps": 10,
832
+ "max_steps": 3525,
833
+ "num_input_tokens_seen": 0,
834
+ "num_train_epochs": 15,
835
+ "save_steps": 500,
836
+ "stateful_callbacks": {
837
+ "TrainerControl": {
838
+ "args": {
839
+ "should_epoch_stop": false,
840
+ "should_evaluate": false,
841
+ "should_log": false,
842
+ "should_save": true,
843
+ "should_training_stop": false
844
+ },
845
+ "attributes": {}
846
+ }
847
+ },
848
+ "total_flos": 4.72337525157888e+16,
849
+ "train_batch_size": 1,
850
+ "trial_name": null,
851
+ "trial_params": null
852
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c5ce7a2f278db7b14ac9373b8ec935370f1982b56eabe6597b75c384a5082e8
3
+ size 5432