File size: 32,550 Bytes
90f0ce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
2022-05-09 23:40:59,402 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,404 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(28996, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2022-05-09 23:40:59,408 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,408 Corpus: "Corpus: 14987 train + 3466 dev + 3684 test sentences"
2022-05-09 23:40:59,408 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,408 Parameters:
2022-05-09 23:40:59,408 - learning_rate: "0.000050"
2022-05-09 23:40:59,408 - mini_batch_size: "16"
2022-05-09 23:40:59,408 - patience: "3"
2022-05-09 23:40:59,409 - anneal_factor: "0.5"
2022-05-09 23:40:59,409 - max_epochs: "10"
2022-05-09 23:40:59,409 - shuffle: "True"
2022-05-09 23:40:59,409 - train_with_dev: "False"
2022-05-09 23:40:59,409 - batch_growth_annealing: "False"
2022-05-09 23:40:59,409 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,409 Model training base path: "resources\taggers\ner"
2022-05-09 23:40:59,409 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,409 Device: cuda:0
2022-05-09 23:40:59,410 ----------------------------------------------------------------------------------------------------
2022-05-09 23:40:59,410 Embeddings storage mode: none
2022-05-09 23:40:59,410 ----------------------------------------------------------------------------------------------------
2022-05-09 23:41:15,820 epoch 1 - iter 93/937 - loss 2.04152065 - samples/sec: 90.73 - lr: 0.000005
2022-05-09 23:41:31,406 epoch 1 - iter 186/937 - loss 1.48569545 - samples/sec: 95.52 - lr: 0.000010
2022-05-09 23:41:46,603 epoch 1 - iter 279/937 - loss 1.18645416 - samples/sec: 97.92 - lr: 0.000015
2022-05-09 23:42:01,525 epoch 1 - iter 372/937 - loss 1.01481547 - samples/sec: 99.74 - lr: 0.000020
2022-05-09 23:42:16,869 epoch 1 - iter 465/937 - loss 0.86894115 - samples/sec: 97.01 - lr: 0.000025
2022-05-09 23:42:32,505 epoch 1 - iter 558/937 - loss 0.75848951 - samples/sec: 95.21 - lr: 0.000030
2022-05-09 23:42:48,889 epoch 1 - iter 651/937 - loss 0.68004440 - samples/sec: 90.87 - lr: 0.000035
2022-05-09 23:43:05,305 epoch 1 - iter 744/937 - loss 0.62468227 - samples/sec: 90.67 - lr: 0.000040
2022-05-09 23:43:22,552 epoch 1 - iter 837/937 - loss 0.57575609 - samples/sec: 86.33 - lr: 0.000045
2022-05-09 23:43:40,505 epoch 1 - iter 930/937 - loss 0.53467358 - samples/sec: 82.91 - lr: 0.000050
2022-05-09 23:43:41,669 ----------------------------------------------------------------------------------------------------
2022-05-09 23:43:41,670 EPOCH 1 done: loss 0.5328 - lr 0.000050
2022-05-09 23:44:01,944 Evaluating as a multi-label problem: False
2022-05-09 23:44:01,998 DEV : loss 0.08702843636274338 - f1-score (micro avg) 0.9042
2022-05-09 23:44:02,088 BAD EPOCHS (no improvement): 4
2022-05-09 23:44:02,089 ----------------------------------------------------------------------------------------------------
2022-05-09 23:44:19,412 epoch 2 - iter 93/937 - loss 0.21171218 - samples/sec: 85.94 - lr: 0.000049
2022-05-09 23:44:39,339 epoch 2 - iter 186/937 - loss 0.20667256 - samples/sec: 74.71 - lr: 0.000049
2022-05-09 23:44:57,325 epoch 2 - iter 279/937 - loss 0.20359662 - samples/sec: 82.76 - lr: 0.000048
2022-05-09 23:45:15,903 epoch 2 - iter 372/937 - loss 0.20181902 - samples/sec: 80.11 - lr: 0.000048
2022-05-09 23:45:33,625 epoch 2 - iter 465/937 - loss 0.20239195 - samples/sec: 84.00 - lr: 0.000047
2022-05-09 23:45:51,983 epoch 2 - iter 558/937 - loss 0.20029145 - samples/sec: 81.07 - lr: 0.000047
2022-05-09 23:46:10,178 epoch 2 - iter 651/937 - loss 0.19802516 - samples/sec: 81.82 - lr: 0.000046
2022-05-09 23:46:27,567 epoch 2 - iter 744/937 - loss 0.19751023 - samples/sec: 85.60 - lr: 0.000046
2022-05-09 23:46:46,030 epoch 2 - iter 837/937 - loss 0.19578745 - samples/sec: 80.62 - lr: 0.000045
2022-05-09 23:47:03,838 epoch 2 - iter 930/937 - loss 0.19400286 - samples/sec: 83.60 - lr: 0.000044
2022-05-09 23:47:05,067 ----------------------------------------------------------------------------------------------------
2022-05-09 23:47:05,067 EPOCH 2 done: loss 0.1938 - lr 0.000044
2022-05-09 23:47:24,009 Evaluating as a multi-label problem: False
2022-05-09 23:47:24,058 DEV : loss 0.06405811011791229 - f1-score (micro avg) 0.9361
2022-05-09 23:47:24,143 BAD EPOCHS (no improvement): 4
2022-05-09 23:47:24,144 ----------------------------------------------------------------------------------------------------
2022-05-09 23:47:43,087 epoch 3 - iter 93/937 - loss 0.17145472 - samples/sec: 78.59 - lr: 0.000044
2022-05-09 23:48:02,729 epoch 3 - iter 186/937 - loss 0.16975910 - samples/sec: 75.78 - lr: 0.000043
2022-05-09 23:48:22,058 epoch 3 - iter 279/937 - loss 0.16698979 - samples/sec: 77.00 - lr: 0.000043
2022-05-09 23:48:42,011 epoch 3 - iter 372/937 - loss 0.16408423 - samples/sec: 74.60 - lr: 0.000042
2022-05-09 23:49:02,832 epoch 3 - iter 465/937 - loss 0.16405058 - samples/sec: 71.49 - lr: 0.000042
2022-05-09 23:49:24,164 epoch 3 - iter 558/937 - loss 0.16308247 - samples/sec: 69.79 - lr: 0.000041
2022-05-09 23:49:44,385 epoch 3 - iter 651/937 - loss 0.16211092 - samples/sec: 73.61 - lr: 0.000041
2022-05-09 23:50:05,176 epoch 3 - iter 744/937 - loss 0.16230919 - samples/sec: 71.59 - lr: 0.000040
2022-05-09 23:50:24,259 epoch 3 - iter 837/937 - loss 0.16223568 - samples/sec: 78.01 - lr: 0.000039
2022-05-09 23:50:42,702 epoch 3 - iter 930/937 - loss 0.16166223 - samples/sec: 80.71 - lr: 0.000039
2022-05-09 23:50:43,928 ----------------------------------------------------------------------------------------------------
2022-05-09 23:50:43,928 EPOCH 3 done: loss 0.1620 - lr 0.000039
2022-05-09 23:51:01,357 Evaluating as a multi-label problem: False
2022-05-09 23:51:01,410 DEV : loss 0.06513667851686478 - f1-score (micro avg) 0.9462
2022-05-09 23:51:01,494 BAD EPOCHS (no improvement): 4
2022-05-09 23:51:01,495 ----------------------------------------------------------------------------------------------------
2022-05-09 23:51:19,373 epoch 4 - iter 93/937 - loss 0.14617156 - samples/sec: 83.28 - lr: 0.000038
2022-05-09 23:51:39,862 epoch 4 - iter 186/937 - loss 0.15318927 - samples/sec: 72.64 - lr: 0.000038
2022-05-09 23:51:58,633 epoch 4 - iter 279/937 - loss 0.15311397 - samples/sec: 79.31 - lr: 0.000037
2022-05-09 23:52:17,782 epoch 4 - iter 372/937 - loss 0.15237270 - samples/sec: 77.73 - lr: 0.000037
2022-05-09 23:52:37,756 epoch 4 - iter 465/937 - loss 0.15252893 - samples/sec: 74.51 - lr: 0.000036
2022-05-09 23:52:57,040 epoch 4 - iter 558/937 - loss 0.15296964 - samples/sec: 77.19 - lr: 0.000036
2022-05-09 23:53:17,120 epoch 4 - iter 651/937 - loss 0.15177070 - samples/sec: 74.12 - lr: 0.000035
2022-05-09 23:53:36,789 epoch 4 - iter 744/937 - loss 0.15212670 - samples/sec: 75.67 - lr: 0.000034
2022-05-09 23:53:55,789 epoch 4 - iter 837/937 - loss 0.15188826 - samples/sec: 78.35 - lr: 0.000034
2022-05-09 23:54:15,078 epoch 4 - iter 930/937 - loss 0.15158585 - samples/sec: 77.16 - lr: 0.000033
2022-05-09 23:54:16,427 ----------------------------------------------------------------------------------------------------
2022-05-09 23:54:16,428 EPOCH 4 done: loss 0.1514 - lr 0.000033
2022-05-09 23:54:37,613 Evaluating as a multi-label problem: False
2022-05-09 23:54:37,666 DEV : loss 0.0851067453622818 - f1-score (micro avg) 0.9445
2022-05-09 23:54:37,758 BAD EPOCHS (no improvement): 4
2022-05-09 23:54:37,759 ----------------------------------------------------------------------------------------------------
2022-05-09 23:54:57,548 epoch 5 - iter 93/937 - loss 0.13786995 - samples/sec: 75.23 - lr: 0.000033
2022-05-09 23:55:17,232 epoch 5 - iter 186/937 - loss 0.14230070 - samples/sec: 75.62 - lr: 0.000032
2022-05-09 23:55:36,628 epoch 5 - iter 279/937 - loss 0.14258916 - samples/sec: 76.74 - lr: 0.000032
2022-05-09 23:55:56,340 epoch 5 - iter 372/937 - loss 0.14284130 - samples/sec: 75.52 - lr: 0.000031
2022-05-09 23:56:15,854 epoch 5 - iter 465/937 - loss 0.14169986 - samples/sec: 76.27 - lr: 0.000031
2022-05-09 23:56:34,410 epoch 5 - iter 558/937 - loss 0.14100332 - samples/sec: 80.21 - lr: 0.000030
2022-05-09 23:56:53,730 epoch 5 - iter 651/937 - loss 0.14139534 - samples/sec: 77.04 - lr: 0.000029
2022-05-09 23:57:12,846 epoch 5 - iter 744/937 - loss 0.14072810 - samples/sec: 77.88 - lr: 0.000029
2022-05-09 23:57:32,509 epoch 5 - iter 837/937 - loss 0.13972343 - samples/sec: 75.72 - lr: 0.000028
2022-05-09 23:57:51,218 epoch 5 - iter 930/937 - loss 0.14088149 - samples/sec: 79.56 - lr: 0.000028
2022-05-09 23:57:52,684 ----------------------------------------------------------------------------------------------------
2022-05-09 23:57:52,685 EPOCH 5 done: loss 0.1408 - lr 0.000028
2022-05-09 23:58:11,005 Evaluating as a multi-label problem: False
2022-05-09 23:58:11,060 DEV : loss 0.07939312607049942 - f1-score (micro avg) 0.9502
2022-05-09 23:58:11,147 BAD EPOCHS (no improvement): 4
2022-05-09 23:58:11,148 ----------------------------------------------------------------------------------------------------
2022-05-09 23:58:29,830 epoch 6 - iter 93/937 - loss 0.13587072 - samples/sec: 79.69 - lr: 0.000027
2022-05-09 23:58:48,422 epoch 6 - iter 186/937 - loss 0.13733201 - samples/sec: 80.06 - lr: 0.000027
2022-05-09 23:59:06,303 epoch 6 - iter 279/937 - loss 0.14061270 - samples/sec: 83.23 - lr: 0.000026
2022-05-09 23:59:24,586 epoch 6 - iter 372/937 - loss 0.13957657 - samples/sec: 81.44 - lr: 0.000026
2022-05-09 23:59:43,413 epoch 6 - iter 465/937 - loss 0.13980319 - samples/sec: 79.05 - lr: 0.000025
2022-05-10 00:00:01,871 epoch 6 - iter 558/937 - loss 0.13997926 - samples/sec: 80.63 - lr: 0.000024
2022-05-10 00:00:19,776 epoch 6 - iter 651/937 - loss 0.13934109 - samples/sec: 83.13 - lr: 0.000024
2022-05-10 00:00:38,921 epoch 6 - iter 744/937 - loss 0.13935470 - samples/sec: 77.75 - lr: 0.000023
2022-05-10 00:00:57,515 epoch 6 - iter 837/937 - loss 0.13944998 - samples/sec: 80.07 - lr: 0.000023
2022-05-10 00:01:15,467 epoch 6 - iter 930/937 - loss 0.13962343 - samples/sec: 82.92 - lr: 0.000022
2022-05-10 00:01:16,715 ----------------------------------------------------------------------------------------------------
2022-05-10 00:01:16,715 EPOCH 6 done: loss 0.1396 - lr 0.000022
2022-05-10 00:01:40,529 Evaluating as a multi-label problem: False
2022-05-10 00:01:40,579 DEV : loss 0.08579559624195099 - f1-score (micro avg) 0.9497
2022-05-10 00:01:40,666 BAD EPOCHS (no improvement): 4
2022-05-10 00:01:40,667 ----------------------------------------------------------------------------------------------------
2022-05-10 00:01:59,831 epoch 7 - iter 93/937 - loss 0.13534539 - samples/sec: 77.69 - lr: 0.000022
2022-05-10 00:02:18,246 epoch 7 - iter 186/937 - loss 0.13551684 - samples/sec: 80.83 - lr: 0.000021
2022-05-10 00:02:36,156 epoch 7 - iter 279/937 - loss 0.13584534 - samples/sec: 83.13 - lr: 0.000021
2022-05-10 00:02:55,093 epoch 7 - iter 372/937 - loss 0.13345388 - samples/sec: 78.60 - lr: 0.000020
2022-05-10 00:03:13,968 epoch 7 - iter 465/937 - loss 0.13357006 - samples/sec: 78.85 - lr: 0.000019
2022-05-10 00:03:33,833 epoch 7 - iter 558/937 - loss 0.13346607 - samples/sec: 74.94 - lr: 0.000019
2022-05-10 00:03:52,609 epoch 7 - iter 651/937 - loss 0.13318798 - samples/sec: 79.29 - lr: 0.000018
2022-05-10 00:04:11,143 epoch 7 - iter 744/937 - loss 0.13297235 - samples/sec: 80.32 - lr: 0.000018
2022-05-10 00:04:29,324 epoch 7 - iter 837/937 - loss 0.13294986 - samples/sec: 81.87 - lr: 0.000017
2022-05-10 00:04:48,227 epoch 7 - iter 930/937 - loss 0.13304211 - samples/sec: 78.74 - lr: 0.000017
2022-05-10 00:04:49,540 ----------------------------------------------------------------------------------------------------
2022-05-10 00:04:49,540 EPOCH 7 done: loss 0.1331 - lr 0.000017
2022-05-10 00:05:07,897 Evaluating as a multi-label problem: False
2022-05-10 00:05:07,956 DEV : loss 0.09259101003408432 - f1-score (micro avg) 0.9515
2022-05-10 00:05:08,048 BAD EPOCHS (no improvement): 4
2022-05-10 00:05:08,049 ----------------------------------------------------------------------------------------------------
2022-05-10 00:05:26,187 epoch 8 - iter 93/937 - loss 0.13287977 - samples/sec: 82.08 - lr: 0.000016
2022-05-10 00:05:46,292 epoch 8 - iter 186/937 - loss 0.13409706 - samples/sec: 74.04 - lr: 0.000016
2022-05-10 00:06:04,623 epoch 8 - iter 279/937 - loss 0.13270913 - samples/sec: 81.19 - lr: 0.000015
2022-05-10 00:06:23,601 epoch 8 - iter 372/937 - loss 0.13243728 - samples/sec: 78.43 - lr: 0.000014
2022-05-10 00:06:42,643 epoch 8 - iter 465/937 - loss 0.13287784 - samples/sec: 78.17 - lr: 0.000014
2022-05-10 00:07:02,185 epoch 8 - iter 558/937 - loss 0.13373988 - samples/sec: 76.17 - lr: 0.000013
2022-05-10 00:07:20,122 epoch 8 - iter 651/937 - loss 0.13402409 - samples/sec: 82.98 - lr: 0.000013
2022-05-10 00:07:39,327 epoch 8 - iter 744/937 - loss 0.13327101 - samples/sec: 77.50 - lr: 0.000012
2022-05-10 00:07:57,782 epoch 8 - iter 837/937 - loss 0.13355020 - samples/sec: 80.65 - lr: 0.000012
2022-05-10 00:08:16,804 epoch 8 - iter 930/937 - loss 0.13294805 - samples/sec: 78.25 - lr: 0.000011
2022-05-10 00:08:18,099 ----------------------------------------------------------------------------------------------------
2022-05-10 00:08:18,099 EPOCH 8 done: loss 0.1327 - lr 0.000011
2022-05-10 00:08:36,160 Evaluating as a multi-label problem: False
2022-05-10 00:08:36,214 DEV : loss 0.09469996392726898 - f1-score (micro avg) 0.9505
2022-05-10 00:08:36,300 BAD EPOCHS (no improvement): 4
2022-05-10 00:08:36,301 ----------------------------------------------------------------------------------------------------
2022-05-10 00:08:54,628 epoch 9 - iter 93/937 - loss 0.13256573 - samples/sec: 81.23 - lr: 0.000011
2022-05-10 00:09:13,253 epoch 9 - iter 186/937 - loss 0.13218317 - samples/sec: 79.94 - lr: 0.000010
2022-05-10 00:09:31,322 epoch 9 - iter 279/937 - loss 0.13240640 - samples/sec: 82.40 - lr: 0.000009
2022-05-10 00:09:49,199 epoch 9 - iter 372/937 - loss 0.13118429 - samples/sec: 83.28 - lr: 0.000009
2022-05-10 00:10:06,958 epoch 9 - iter 465/937 - loss 0.13128632 - samples/sec: 83.83 - lr: 0.000008
2022-05-10 00:10:25,134 epoch 9 - iter 558/937 - loss 0.12936261 - samples/sec: 81.90 - lr: 0.000008
2022-05-10 00:10:43,680 epoch 9 - iter 651/937 - loss 0.12973987 - samples/sec: 80.27 - lr: 0.000007
2022-05-10 00:11:01,678 epoch 9 - iter 744/937 - loss 0.12968500 - samples/sec: 82.71 - lr: 0.000007
2022-05-10 00:11:19,484 epoch 9 - iter 837/937 - loss 0.12985020 - samples/sec: 83.59 - lr: 0.000006
2022-05-10 00:11:37,340 epoch 9 - iter 930/937 - loss 0.12947938 - samples/sec: 83.36 - lr: 0.000006
2022-05-10 00:11:38,689 ----------------------------------------------------------------------------------------------------
2022-05-10 00:11:38,689 EPOCH 9 done: loss 0.1294 - lr 0.000006
2022-05-10 00:11:56,867 Evaluating as a multi-label problem: False
2022-05-10 00:11:56,918 DEV : loss 0.09501232951879501 - f1-score (micro avg) 0.9504
2022-05-10 00:11:57,003 BAD EPOCHS (no improvement): 4
2022-05-10 00:11:57,004 ----------------------------------------------------------------------------------------------------
2022-05-10 00:12:15,701 epoch 10 - iter 93/937 - loss 0.12882436 - samples/sec: 79.62 - lr: 0.000005
2022-05-10 00:12:34,784 epoch 10 - iter 186/937 - loss 0.12932802 - samples/sec: 78.02 - lr: 0.000004
2022-05-10 00:12:53,563 epoch 10 - iter 279/937 - loss 0.12935565 - samples/sec: 79.27 - lr: 0.000004
2022-05-10 00:13:12,428 epoch 10 - iter 372/937 - loss 0.13016513 - samples/sec: 78.91 - lr: 0.000003
2022-05-10 00:13:31,484 epoch 10 - iter 465/937 - loss 0.13001423 - samples/sec: 78.12 - lr: 0.000003
2022-05-10 00:13:50,860 epoch 10 - iter 558/937 - loss 0.12967414 - samples/sec: 76.82 - lr: 0.000002
2022-05-10 00:14:10,036 epoch 10 - iter 651/937 - loss 0.13044245 - samples/sec: 77.61 - lr: 0.000002
2022-05-10 00:14:29,046 epoch 10 - iter 744/937 - loss 0.13049319 - samples/sec: 78.30 - lr: 0.000001
2022-05-10 00:14:47,934 epoch 10 - iter 837/937 - loss 0.12970693 - samples/sec: 78.83 - lr: 0.000001
2022-05-10 00:15:06,881 epoch 10 - iter 930/937 - loss 0.12987301 - samples/sec: 78.57 - lr: 0.000000
2022-05-10 00:15:08,384 ----------------------------------------------------------------------------------------------------
2022-05-10 00:15:08,384 EPOCH 10 done: loss 0.1298 - lr 0.000000
2022-05-10 00:15:27,169 Evaluating as a multi-label problem: False
2022-05-10 00:15:27,221 DEV : loss 0.09416753053665161 - f1-score (micro avg) 0.9513
2022-05-10 00:15:27,303 BAD EPOCHS (no improvement): 4
2022-05-10 00:15:28,112 ----------------------------------------------------------------------------------------------------
2022-05-10 00:15:28,113 Testing using last state of model ...
2022-05-10 00:15:47,035 Evaluating as a multi-label problem: False
2022-05-10 00:15:47,087 0.9117 0.9212 0.9164 0.879
2022-05-10 00:15:47,087
Results:
- F-score (micro) 0.9164
- F-score (macro) 0.9024
- Accuracy 0.879
By class:
precision recall f1-score support
ORG 0.8893 0.9097 0.8994 1661
LOC 0.9301 0.9335 0.9318 1668
PER 0.9699 0.9579 0.9639 1617
MISC 0.7951 0.8348 0.8145 702
micro avg 0.9117 0.9212 0.9164 5648
macro avg 0.8961 0.9090 0.9024 5648
weighted avg 0.9127 0.9212 0.9169 5648
2022-05-10 00:15:47,088 ----------------------------------------------------------------------------------------------------
|