File size: 2,089 Bytes
26fca56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36fc30
 
 
 
 
 
 
26fca56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36fc30
26fca56
 
 
 
 
 
 
 
 
 
 
c36fc30
 
 
 
 
26fca56
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: mt5-base-qa_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-qa_v1

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5600
- Rouge1: 0.7136
- Rouge2: 0.4062
- Rougel: 0.7131
- Rougelsum: 0.7129
- Bleu: 0.4978
- Exact Match: 0.4803

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu   | Exact Match |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:-----------:|
| 0.5439        | 1.0   | 2000  | 0.9280          | 0.6925 | 0.4012 | 0.6919 | 0.6921    | 0.4703 | 0.4422      |
| 0.2443        | 2.0   | 4000  | 1.0939          | 0.6986 | 0.3915 | 0.6984 | 0.6984    | 0.4537 | 0.4525      |
| 0.1263        | 3.0   | 6000  | 1.2665          | 0.7005 | 0.3898 | 0.7004 | 0.7005    | 0.4569 | 0.4723      |
| 0.0769        | 4.0   | 8000  | 1.5002          | 0.7159 | 0.4065 | 0.7158 | 0.7157    | 0.4987 | 0.4828      |
| 0.0507        | 5.0   | 10000 | 1.5600          | 0.7136 | 0.4062 | 0.7131 | 0.7129    | 0.4978 | 0.4803      |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.0.1
- Tokenizers 0.20.1