hasarinduperera commited on
Commit
179ae9e
·
1 Parent(s): 990530f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1277.87 +/- 145.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18fdafbb3b4c5e48ba8dd84eb20ab0de3728dcbfe2bf9c8cccbdfa859c6af341
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef660d9d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef660d9dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef660d9e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef660d9ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fef660d9f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fef660dc040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef660dc0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef660dc160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fef660dc1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef660dc280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef660dc310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef660dc3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fef660d7a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678316976970736525,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKY95T4Z4pG9oKIOP3Hhqj+KwFS+79iZPz+QBD4oJ82/5lRWPpLH1D5UsUM/1Ikgv7nXrb85tj4/EkLMvqwvID1zBJs/rrAvviPQJD9dnL089cshPJY7t7/wEco/GHySPixPaL+w/ho/6napPk2gGD9YN70/fyRMP8Woj76o350/ytMSP/y4P77n3vk++8ClvwRBRL8fuBc/hlTVvkFcL7/Svoo/JjRfP/diCb799oY+f/l/v+U+67zBIT8+yrnLv/8qtL/Njlg9uyQ8P3nbqDwsT2i/sP4aP+p2qT5NoBg/+P4hP4byPD56bcU+2TG2P2IPmT87Y2o/VM5XPjdRnb9AGmK+p6HbPZKGMr6kQcG+0ITUvfGvOD+MTyM8vc8xPnNYIT036q8+i90kP1045zxUsiu/r65dvxzYNT8Rxau+LE9ov7D+Gj/qdqk+TaAYP+64xD5wjJY/DhqQv9jZpj94GjU/IDqsvnACGD+QUxU+2n3Av3kxk79PAak/FkNiP8AO4j5zRQ/AZXgdv4YuNr02R4m+MYAcPqQNkTxRMsg/mzG1PjFn5T+9pjO+fy5lP6gNjT/WadO/6napPk2gGD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmLl41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT/K/vQAAAACixvq/AAAAAAa/iD0AAAAAxf/uPwAAAAAlNbm9AAAAAF5Z8j8AAAAAzjEQPQAAAACLHN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4W3JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBdfp70AAAAAsYrivwAAAADq2Fw9AAAAAP1j5T8AAAAAJQODPAAAAAB5owBAAAAAAHJW4r0AAAAAalzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKpQTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC7yQk9AAAAACsg778AAAAAtGbhPQAAAACASuM/AAAAAArM1DwAAAAAGi7yPwAAAAB14Zu8AAAAAEBk2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/+k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA55jhvQAAAAA8dvO/AAAAAPfcgbsAAAAArx7xPwAAAACrJP09AAAAAI8L6j8AAAAAGImWvQAAAAAutuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2zPBrN4aCMAWyUTegDjAF0lEdAqcUi6WgOBnV9lChoBkdAl/ghOxjawmgHTegDaAhHQKnOTgWJrL11fZQoaAZHQJpV+BMBZIRoB03oA2gIR0Cp0bFkH2RJdX2UKGgGR0Ca0SaDwpfAaAdN6ANoCEdAqdHzRSgoPXV9lChoBkdAnNugKOT7mGgHTegDaAhHQKnUrFgDzRR1fZQoaAZHQJmhQR9PUKBoB03oA2gIR0Cp25zTWoWIdX2UKGgGR0CbNTwazeGgaAdN6ANoCEdAqd2QAMlTnHV9lChoBkdAmaOcQVbiZWgHTegDaAhHQKndygbp/w11fZQoaAZHQJdhaKaXrt5oB03oA2gIR0Cp4HfkWAPNdX2UKGgGR0CZ98hDgIhRaAdN6ANoCEdAqegcDp1RtXV9lChoBkdAm1jUD+zdDmgHTegDaAhHQKnrFg9/z8R1fZQoaAZHQJjMDRWtEG9oB03oA2gIR0Cp63Q/HHWCdX2UKGgGR0CYjfBBzFMqaAdN6ANoCEdAqe992HLzPXV9lChoBkdAl1P2krPMS2gHTegDaAhHQKn2ZuRcNYt1fZQoaAZHQJPOTZsbedloB03oA2gIR0Cp+EF3Qla9dX2UKGgGR0Cag2edCmdiaAdN6ANoCEdAqfh7YwqRU3V9lChoBkdAnEf9hy8zymgHTegDaAhHQKn7Dj3Ehq11fZQoaAZHQJ42V60IC2doB03oA2gIR0CqAgc89wFUdX2UKGgGR0CavM/WlMyraAdN6ANoCEdAqgRb3RG+bnV9lChoBkdAmuB/jXFtK2gHTegDaAhHQKoEtC/Glyl1fZQoaAZHQJsn4M8YAKhoB03oA2gIR0CqCOiYsunNdX2UKGgGR0CRAcymQ8wIaAdN6ANoCEdAqhGFsabWmXV9lChoBkdAjfNGVzIV/WgHTegDaAhHQKoTghllK9R1fZQoaAZHQI8/0OCoS+RoB03oA2gIR0CqE8Wz4UN8dX2UKGgGR0CPmT+o99tuaAdN6ANoCEdAqhZ6hakhzXV9lChoBkdAnU4bbcoH9mgHTegDaAhHQKodSN5MURF1fZQoaAZHQJxm4x33YcxoB03oA2gIR0CqHy0WdmQKdX2UKGgGR0CYHvicXm/4aAdN6ANoCEdAqh9o+yJKrnV9lChoBkdAmopAAZKnN2gHTegDaAhHQKoi8HCXQdF1fZQoaAZHQJp+zIkqto1oB03oA2gIR0CqLGXC9AX3dX2UKGgGR0CagAQ/oq0/aAdN6ANoCEdAqi45cs189nV9lChoBkdAmYbDUd7v5WgHTegDaAhHQKoudXCCSRt1fZQoaAZHQJrOJC/oJRhoB03oA2gIR0CqMRpaaCtjdX2UKGgGR0CbOhQhwEQoaAdN6ANoCEdAqjgJF5OafHV9lChoBkdAm4FNOEdvKmgHTegDaAhHQKo6Asf7rLR1fZQoaAZHQJsYmPV/c35oB03oA2gIR0CqOj4TbnHOdX2UKGgGR0CVjoORkmQbaAdN6ANoCEdAqjz00WM0g3V9lChoBkdAnSP/24/eL2gHTegDaAhHQKpHZX+VC5V1fZQoaAZHQJaUEwWWQfZoB03oA2gIR0CqSU8NpdrwdX2UKGgGR0Ccb3pQk5ZKaAdN6ANoCEdAqkmJkPMB63V9lChoBkdAmu0tyxRl6WgHTegDaAhHQKpMh4W1twd1fZQoaAZHQJlGGl+EytVoB03oA2gIR0CqU6GpVCHAdX2UKGgGR0CZRn7mdRR/aAdN6ANoCEdAqlWTGipNsXV9lChoBkdAmfdM+NcW02gHTegDaAhHQKpV3BhQWN51fZQoaAZHQJjg6/nGKhtoB03oA2gIR0CqWLJmukk9dX2UKGgGR0CYz5jwx33YaAdN6ANoCEdAqmRCx9oexXV9lChoBkdAl5LzrVvuPWgHTegDaAhHQKpneLuQZGd1fZQoaAZHQJlI2Y0EX+FoB03oA2gIR0CqZ+A7HQyAdX2UKGgGR0CY7DDdP+GXaAdN6ANoCEdAqmuvpwCKaXV9lChoBkdAmW2OYD1XeWgHTegDaAhHQKpysbNr0rd1fZQoaAZHQJMVO2BreqJoB03oA2gIR0CqdJlLOAy3dX2UKGgGR0CKzj0nw5NoaAdN6ANoCEdAqnTU6tDD0nV9lChoBkdAkxggKjSG8GgHTegDaAhHQKp3fustCiR1fZQoaAZHQJf5iSs8xKxoB03oA2gIR0CqfuDfek57dX2UKGgGR0CbOB92HLzPaAdN6ANoCEdAqoHuso2GZnV9lChoBkdAm7ND8Lron2gHTegDaAhHQKqCT5Sm65J1fZQoaAZHQJfXhfeDWbxoB03oA2gIR0Cqh1jlPrOadX2UKGgGR0CaCOfQ8fV7aAdN6ANoCEdAqo9slgMMJHV9lChoBkdAmrE/ES/TLGgHTegDaAhHQKqRXc2R7qp1fZQoaAZHQJxEhTaTOgRoB03oA2gIR0CqkZwL/jsEdX2UKGgGR0CdEv9wWFewaAdN6ANoCEdAqpR7neSB9XV9lChoBkdAmNrxGYrrgWgHTegDaAhHQKqbvbg0j1R1fZQoaAZHQJnby5uqFRJoB03oA2gIR0CqndyVv/BFdX2UKGgGR0CaBPXnhbW3aAdN6ANoCEdAqp47ghr303V9lChoBkdAnBXCjpLVWmgHTegDaAhHQKqii2n889x1fZQoaAZHQJlAOANG3F1oB03oA2gIR0Cqq34Pf8/EdX2UKGgGR0CX+wFCb+cZaAdN6ANoCEdAqq1wf0VafXV9lChoBkdAl1U5XdTHbWgHTegDaAhHQKqtrfBvaUR1fZQoaAZHQJmq8WoFV1hoB03oA2gIR0CqsI0UXYUWdX2UKGgGR0CcbtflZHNHaAdN6ANoCEdAqren1YhdMXV9lChoBkdAnCsZbUwztWgHTegDaAhHQKq5nqJMxoJ1fZQoaAZHQJuDnzH0btJoB03oA2gIR0CqudwbEP1+dX2UKGgGR0Cb9hYHPeHjaAdN6ANoCEdAqr2RmPHT7XV9lChoBkdAmiPirxRVImgHTegDaAhHQKrHj/EOy3V1fZQoaAZHQJxCtimVJMBoB03oA2gIR0CqyZCG34KydX2UKGgGR0CdDxK2rn1WaAdN6ANoCEdAqsnWtCAtnXV9lChoBkdAnc49epn6EmgHTegDaAhHQKrMpDjzZpV1fZQoaAZHQJ2JNUCJXQtoB03oA2gIR0Cq09dTP0I1dX2UKGgGR0Cc4IRFZxJeaAdN6ANoCEdAqtXGiUPhAHV9lChoBkdAnNt/LDAJs2gHTegDaAhHQKrWA/yGzrx1fZQoaAZHQJ3H3N+so2JoB03oA2gIR0Cq2MJWNm16dX2UKGgGR0CbR4ySV4X5aAdN6ANoCEdAquNcSf16FHV9lChoBkdAe5JCkGiYcGgHTegDaAhHQKrlTVXmvGJ1fZQoaAZHQJngQDFId2hoB03oA2gIR0Cq5ZAwfyPNdX2UKGgGR0Cbqx5Jsfq5aAdN6ANoCEdAquhKZOSGJ3V9lChoBkdAlcT3lCCz1WgHTegDaAhHQKrvRnHNorZ1fZQoaAZHQJn4UTdtVJdoB03oA2gIR0Cq8Tqk2xY8dX2UKGgGR0CXG9FdcB2faAdN6ANoCEdAqvF53PiT+3V9lChoBkdAleWqI3zcymgHTegDaAhHQKr0QQcxTKl1fZQoaAZHQJgOq+fywwFoB03oA2gIR0Cq/g03Ov+wdX2UKGgGR0CW8zXC0ngHaAdN6ANoCEdAqwDHiWE9MnV9lChoBkdAllqRpL26CmgHTegDaAhHQKsBAlchTwV1fZQoaAZHQJVua49X9zhoB03oA2gIR0CrA8BYvFm4dX2UKGgGR0CX5sYEnssyaAdN6ANoCEdAqwr6xC6YmnV9lChoBkdAj0n94NZvDWgHTegDaAhHQKsM6p97Wup1fZQoaAZHQJjT/fMwDeVoB03oA2gIR0CrDTEFnqVydX2UKGgGR0CYnULUTcqOaAdN6ANoCEdAqxALOZ9d/3V9lChoBkdAmQum7aqS5mgHTegDaAhHQKsZAbcXWOJ1fZQoaAZHQJQsI0DU3GZoB03oA2gIR0CrHBygXdj5dX2UKGgGR0CZdpcm0E5iaAdN6ANoCEdAqxx8aCL/CXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4f6c59e3ae348d5d0a3adc4737e2f05708f42a93864b6b707f4b01b4ac197e
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a41373804337b75eebf89024a2ae5b5be45e9408a0e800537fcf5f4a1bf3e72b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef660d9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef660d9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef660d9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef660d9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fef660d9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fef660dc040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef660dc0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef660dc160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fef660dc1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef660dc280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef660dc310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef660dc3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef660d7a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678316976970736525, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKY95T4Z4pG9oKIOP3Hhqj+KwFS+79iZPz+QBD4oJ82/5lRWPpLH1D5UsUM/1Ikgv7nXrb85tj4/EkLMvqwvID1zBJs/rrAvviPQJD9dnL089cshPJY7t7/wEco/GHySPixPaL+w/ho/6napPk2gGD9YN70/fyRMP8Woj76o350/ytMSP/y4P77n3vk++8ClvwRBRL8fuBc/hlTVvkFcL7/Svoo/JjRfP/diCb799oY+f/l/v+U+67zBIT8+yrnLv/8qtL/Njlg9uyQ8P3nbqDwsT2i/sP4aP+p2qT5NoBg/+P4hP4byPD56bcU+2TG2P2IPmT87Y2o/VM5XPjdRnb9AGmK+p6HbPZKGMr6kQcG+0ITUvfGvOD+MTyM8vc8xPnNYIT036q8+i90kP1045zxUsiu/r65dvxzYNT8Rxau+LE9ov7D+Gj/qdqk+TaAYP+64xD5wjJY/DhqQv9jZpj94GjU/IDqsvnACGD+QUxU+2n3Av3kxk79PAak/FkNiP8AO4j5zRQ/AZXgdv4YuNr02R4m+MYAcPqQNkTxRMsg/mzG1PjFn5T+9pjO+fy5lP6gNjT/WadO/6napPk2gGD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmLl41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT/K/vQAAAACixvq/AAAAAAa/iD0AAAAAxf/uPwAAAAAlNbm9AAAAAF5Z8j8AAAAAzjEQPQAAAACLHN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4W3JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBdfp70AAAAAsYrivwAAAADq2Fw9AAAAAP1j5T8AAAAAJQODPAAAAAB5owBAAAAAAHJW4r0AAAAAalzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKpQTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC7yQk9AAAAACsg778AAAAAtGbhPQAAAACASuM/AAAAAArM1DwAAAAAGi7yPwAAAAB14Zu8AAAAAEBk2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/+k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA55jhvQAAAAA8dvO/AAAAAPfcgbsAAAAArx7xPwAAAACrJP09AAAAAI8L6j8AAAAAGImWvQAAAAAutuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2zPBrN4aCMAWyUTegDjAF0lEdAqcUi6WgOBnV9lChoBkdAl/ghOxjawmgHTegDaAhHQKnOTgWJrL11fZQoaAZHQJpV+BMBZIRoB03oA2gIR0Cp0bFkH2RJdX2UKGgGR0Ca0SaDwpfAaAdN6ANoCEdAqdHzRSgoPXV9lChoBkdAnNugKOT7mGgHTegDaAhHQKnUrFgDzRR1fZQoaAZHQJmhQR9PUKBoB03oA2gIR0Cp25zTWoWIdX2UKGgGR0CbNTwazeGgaAdN6ANoCEdAqd2QAMlTnHV9lChoBkdAmaOcQVbiZWgHTegDaAhHQKndygbp/w11fZQoaAZHQJdhaKaXrt5oB03oA2gIR0Cp4HfkWAPNdX2UKGgGR0CZ98hDgIhRaAdN6ANoCEdAqegcDp1RtXV9lChoBkdAm1jUD+zdDmgHTegDaAhHQKnrFg9/z8R1fZQoaAZHQJjMDRWtEG9oB03oA2gIR0Cp63Q/HHWCdX2UKGgGR0CYjfBBzFMqaAdN6ANoCEdAqe992HLzPXV9lChoBkdAl1P2krPMS2gHTegDaAhHQKn2ZuRcNYt1fZQoaAZHQJPOTZsbedloB03oA2gIR0Cp+EF3Qla9dX2UKGgGR0Cag2edCmdiaAdN6ANoCEdAqfh7YwqRU3V9lChoBkdAnEf9hy8zymgHTegDaAhHQKn7Dj3Ehq11fZQoaAZHQJ42V60IC2doB03oA2gIR0CqAgc89wFUdX2UKGgGR0CavM/WlMyraAdN6ANoCEdAqgRb3RG+bnV9lChoBkdAmuB/jXFtK2gHTegDaAhHQKoEtC/Glyl1fZQoaAZHQJsn4M8YAKhoB03oA2gIR0CqCOiYsunNdX2UKGgGR0CRAcymQ8wIaAdN6ANoCEdAqhGFsabWmXV9lChoBkdAjfNGVzIV/WgHTegDaAhHQKoTghllK9R1fZQoaAZHQI8/0OCoS+RoB03oA2gIR0CqE8Wz4UN8dX2UKGgGR0CPmT+o99tuaAdN6ANoCEdAqhZ6hakhzXV9lChoBkdAnU4bbcoH9mgHTegDaAhHQKodSN5MURF1fZQoaAZHQJxm4x33YcxoB03oA2gIR0CqHy0WdmQKdX2UKGgGR0CYHvicXm/4aAdN6ANoCEdAqh9o+yJKrnV9lChoBkdAmopAAZKnN2gHTegDaAhHQKoi8HCXQdF1fZQoaAZHQJp+zIkqto1oB03oA2gIR0CqLGXC9AX3dX2UKGgGR0CagAQ/oq0/aAdN6ANoCEdAqi45cs189nV9lChoBkdAmYbDUd7v5WgHTegDaAhHQKoudXCCSRt1fZQoaAZHQJrOJC/oJRhoB03oA2gIR0CqMRpaaCtjdX2UKGgGR0CbOhQhwEQoaAdN6ANoCEdAqjgJF5OafHV9lChoBkdAm4FNOEdvKmgHTegDaAhHQKo6Asf7rLR1fZQoaAZHQJsYmPV/c35oB03oA2gIR0CqOj4TbnHOdX2UKGgGR0CVjoORkmQbaAdN6ANoCEdAqjz00WM0g3V9lChoBkdAnSP/24/eL2gHTegDaAhHQKpHZX+VC5V1fZQoaAZHQJaUEwWWQfZoB03oA2gIR0CqSU8NpdrwdX2UKGgGR0Ccb3pQk5ZKaAdN6ANoCEdAqkmJkPMB63V9lChoBkdAmu0tyxRl6WgHTegDaAhHQKpMh4W1twd1fZQoaAZHQJlGGl+EytVoB03oA2gIR0CqU6GpVCHAdX2UKGgGR0CZRn7mdRR/aAdN6ANoCEdAqlWTGipNsXV9lChoBkdAmfdM+NcW02gHTegDaAhHQKpV3BhQWN51fZQoaAZHQJjg6/nGKhtoB03oA2gIR0CqWLJmukk9dX2UKGgGR0CYz5jwx33YaAdN6ANoCEdAqmRCx9oexXV9lChoBkdAl5LzrVvuPWgHTegDaAhHQKpneLuQZGd1fZQoaAZHQJlI2Y0EX+FoB03oA2gIR0CqZ+A7HQyAdX2UKGgGR0CY7DDdP+GXaAdN6ANoCEdAqmuvpwCKaXV9lChoBkdAmW2OYD1XeWgHTegDaAhHQKpysbNr0rd1fZQoaAZHQJMVO2BreqJoB03oA2gIR0CqdJlLOAy3dX2UKGgGR0CKzj0nw5NoaAdN6ANoCEdAqnTU6tDD0nV9lChoBkdAkxggKjSG8GgHTegDaAhHQKp3fustCiR1fZQoaAZHQJf5iSs8xKxoB03oA2gIR0CqfuDfek57dX2UKGgGR0CbOB92HLzPaAdN6ANoCEdAqoHuso2GZnV9lChoBkdAm7ND8Lron2gHTegDaAhHQKqCT5Sm65J1fZQoaAZHQJfXhfeDWbxoB03oA2gIR0Cqh1jlPrOadX2UKGgGR0CaCOfQ8fV7aAdN6ANoCEdAqo9slgMMJHV9lChoBkdAmrE/ES/TLGgHTegDaAhHQKqRXc2R7qp1fZQoaAZHQJxEhTaTOgRoB03oA2gIR0CqkZwL/jsEdX2UKGgGR0CdEv9wWFewaAdN6ANoCEdAqpR7neSB9XV9lChoBkdAmNrxGYrrgWgHTegDaAhHQKqbvbg0j1R1fZQoaAZHQJnby5uqFRJoB03oA2gIR0CqndyVv/BFdX2UKGgGR0CaBPXnhbW3aAdN6ANoCEdAqp47ghr303V9lChoBkdAnBXCjpLVWmgHTegDaAhHQKqii2n889x1fZQoaAZHQJlAOANG3F1oB03oA2gIR0Cqq34Pf8/EdX2UKGgGR0CX+wFCb+cZaAdN6ANoCEdAqq1wf0VafXV9lChoBkdAl1U5XdTHbWgHTegDaAhHQKqtrfBvaUR1fZQoaAZHQJmq8WoFV1hoB03oA2gIR0CqsI0UXYUWdX2UKGgGR0CcbtflZHNHaAdN6ANoCEdAqren1YhdMXV9lChoBkdAnCsZbUwztWgHTegDaAhHQKq5nqJMxoJ1fZQoaAZHQJuDnzH0btJoB03oA2gIR0CqudwbEP1+dX2UKGgGR0Cb9hYHPeHjaAdN6ANoCEdAqr2RmPHT7XV9lChoBkdAmiPirxRVImgHTegDaAhHQKrHj/EOy3V1fZQoaAZHQJxCtimVJMBoB03oA2gIR0CqyZCG34KydX2UKGgGR0CdDxK2rn1WaAdN6ANoCEdAqsnWtCAtnXV9lChoBkdAnc49epn6EmgHTegDaAhHQKrMpDjzZpV1fZQoaAZHQJ2JNUCJXQtoB03oA2gIR0Cq09dTP0I1dX2UKGgGR0Cc4IRFZxJeaAdN6ANoCEdAqtXGiUPhAHV9lChoBkdAnNt/LDAJs2gHTegDaAhHQKrWA/yGzrx1fZQoaAZHQJ3H3N+so2JoB03oA2gIR0Cq2MJWNm16dX2UKGgGR0CbR4ySV4X5aAdN6ANoCEdAquNcSf16FHV9lChoBkdAe5JCkGiYcGgHTegDaAhHQKrlTVXmvGJ1fZQoaAZHQJngQDFId2hoB03oA2gIR0Cq5ZAwfyPNdX2UKGgGR0Cbqx5Jsfq5aAdN6ANoCEdAquhKZOSGJ3V9lChoBkdAlcT3lCCz1WgHTegDaAhHQKrvRnHNorZ1fZQoaAZHQJn4UTdtVJdoB03oA2gIR0Cq8Tqk2xY8dX2UKGgGR0CXG9FdcB2faAdN6ANoCEdAqvF53PiT+3V9lChoBkdAleWqI3zcymgHTegDaAhHQKr0QQcxTKl1fZQoaAZHQJgOq+fywwFoB03oA2gIR0Cq/g03Ov+wdX2UKGgGR0CW8zXC0ngHaAdN6ANoCEdAqwDHiWE9MnV9lChoBkdAllqRpL26CmgHTegDaAhHQKsBAlchTwV1fZQoaAZHQJVua49X9zhoB03oA2gIR0CrA8BYvFm4dX2UKGgGR0CX5sYEnssyaAdN6ANoCEdAqwr6xC6YmnV9lChoBkdAj0n94NZvDWgHTegDaAhHQKsM6p97Wup1fZQoaAZHQJjT/fMwDeVoB03oA2gIR0CrDTEFnqVydX2UKGgGR0CYnULUTcqOaAdN6ANoCEdAqxALOZ9d/3V9lChoBkdAmQum7aqS5mgHTegDaAhHQKsZAbcXWOJ1fZQoaAZHQJQsI0DU3GZoB03oA2gIR0CrHBygXdj5dX2UKGgGR0CZdpcm0E5iaAdN6ANoCEdAqxx8aCL/CXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7a297c01382a084bcfca7b82454b9801a4ade28a95caee603c846cf9a44a417
3
+ size 1171556
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1277.872828534589, "std_reward": 145.4716503932954, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T00:08:28.402266"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001a4fbb562f9463140d01855e2750522f9bc69af6ebf5b1971d5797bd1f43a6
3
+ size 2136