--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: hasan-mr/t5-small-finetuned-summarization-billsum-v1 results: [] --- # hasan-mr/t5-small-finetuned-summarization-billsum-v1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5716 - Validation Loss: 2.3842 - Train Rougel: tf.Tensor(0.13416424, shape=(), dtype=float32) - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Rougel | Epoch | |:----------:|:---------------:|:-----------------------------------------------:|:-----:| | 3.3695 | 2.7228 | tf.Tensor(0.10740497, shape=(), dtype=float32) | 0 | | 2.8189 | 2.5337 | tf.Tensor(0.11091911, shape=(), dtype=float32) | 1 | | 2.6657 | 2.4427 | tf.Tensor(0.124923535, shape=(), dtype=float32) | 2 | | 2.5716 | 2.3842 | tf.Tensor(0.13416424, shape=(), dtype=float32) | 3 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.14.0 - Datasets 2.14.5 - Tokenizers 0.14.1