haryoaw commited on
Commit
9a4b043
Β·
1 Parent(s): 0addc9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -7
README.md CHANGED
@@ -1,6 +1,18 @@
 
 
 
 
 
 
 
 
1
  # Indonesia Recipe Ingredients Generator Model
2
 
3
- 😎 *Have fun on generating ingredients* 😎
 
 
 
 
4
 
5
  This is a fine-tuned model to generate the Indonesian food ingredients. One of my personal project that I did in my free time.
6
 
@@ -8,18 +20,18 @@ Basically, you give the name of the food and it will produce the ingredients of
8
 
9
  ## Model
10
 
11
- Data: [Indonesian Recipe Data on Kaggle](https://www.kaggle.com/datasets/canggih/indonesian-food-recipes)
12
  Pre-trained Model: [IndoBART-v2](https://huggingface.co/indobenchmark/indobart-v2)
13
 
14
  ## How to use
15
 
16
- We will specify the use of the tokenizer and the model.
17
 
18
  ### Tokenizer
19
 
20
  Since we use `indobart-v2`, we need to use their tokenizer.
21
 
22
- First, install the tokenizer using `pip install indobenchmark-toolkit`.
23
 
24
  After that, you can load the tokenizer:
25
 
@@ -52,6 +64,4 @@ nasi goreng ayam
52
 
53
  ~To be continued
54
 
55
- ---
56
- license: mit
57
- ---
 
1
+ ---
2
+ language: id
3
+ tags:
4
+ - bart
5
+ - id
6
+ license: mit
7
+ ---
8
+
9
  # Indonesia Recipe Ingredients Generator Model
10
 
11
+ **WARNING: inference on Huggingface might not run since the tokenizer is not the default one. Currently, I want to build a spaces to run the inference.
12
+ Please wait for it**
13
+
14
+
15
+ 😎 **Have fun on generating ingredients** 😎
16
 
17
  This is a fine-tuned model to generate the Indonesian food ingredients. One of my personal project that I did in my free time.
18
 
 
20
 
21
  ## Model
22
 
23
+ Data: [Indonesian Recipe Data on Kaggle](https://www.kaggle.com/datasets/canggih/indonesian-food-recipes)
24
  Pre-trained Model: [IndoBART-v2](https://huggingface.co/indobenchmark/indobart-v2)
25
 
26
  ## How to use
27
 
28
+ We will specify the usage of the tokenizer and the model.
29
 
30
  ### Tokenizer
31
 
32
  Since we use `indobart-v2`, we need to use their tokenizer.
33
 
34
+ First, install the tokenizer by doing `pip install indobenchmark-toolkit`.
35
 
36
  After that, you can load the tokenizer:
37
 
 
64
 
65
  ~To be continued
66
 
67
+