harumix commited on
Commit
d5e04db
·
verified ·
1 Parent(s): 5145adb

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.4361865520477295
25
+
26
+ runtime: 0.1597
27
+
28
+ samples_per_second: 125.261
29
+
30
+ steps_per_second: 12.526
31
+
32
+ : 3.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-30/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-30/README.md ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:78
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Can we have a lazy day together?
12
+ sentences:
13
+ - That sounds perfect, let’s do it.
14
+ - No, but I’d love to have a cat someday!
15
+ - I’m more introverted, but I enjoy talking about games with people.
16
+ - source_sentence: What is your name?
17
+ sentences:
18
+ - I know we will, as long as we’re together.
19
+ - Yes, I love fan art from my favorite games.
20
+ - My name is Harumi.
21
+ - source_sentence: Do you believe in magic?
22
+ sentences:
23
+ - Yes, especially in the world of games!
24
+ - Yes, especially when they’re part of a game!
25
+ - I’m from Tokyo, Japan.
26
+ - source_sentence: Are you proud of me?
27
+ sentences:
28
+ - I’m so proud of everything you do.
29
+ - Yes, I enjoy animated and fantasy movies.
30
+ - You always do.
31
+ - source_sentence: Would you like to go on a trip with me?
32
+ sentences:
33
+ - How could I forget? It was perfect.
34
+ - Yes, especially if they have cosplay or gaming events.
35
+ - That sounds amazing, let’s plan it!
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("sentence_transformers_model_id")
88
+ # Run inference
89
+ sentences = [
90
+ 'Would you like to go on a trip with me?',
91
+ 'That sounds amazing, let’s plan it!',
92
+ 'How could I forget? It was perfect.',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 78 training samples
148
+ * Columns: <code>query</code> and <code>answer</code>
149
+ * Approximate statistics based on the first 78 samples:
150
+ | | query | answer |
151
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
152
+ | type | string | string |
153
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.09 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.67 tokens</li><li>max: 17 tokens</li></ul> |
154
+ * Samples:
155
+ | query | answer |
156
+ |:-------------------------------------|:-------------------------------------------------------|
157
+ | <code>Do you love me?</code> | <code>Of course, I love you more than anything!</code> |
158
+ | <code>Can I call you now?</code> | <code>Of course, I’d love to hear your voice.</code> |
159
+ | <code>Do you like my cooking?</code> | <code>I love it! You’re the best chef.</code> |
160
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
161
+ ```json
162
+ {
163
+ "scale": 20.0,
164
+ "similarity_fct": "cos_sim"
165
+ }
166
+ ```
167
+
168
+ ### Evaluation Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+
173
+ * Size: 20 evaluation samples
174
+ * Columns: <code>query</code> and <code>answer</code>
175
+ * Approximate statistics based on the first 20 samples:
176
+ | | query | answer |
177
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
178
+ | type | string | string |
179
+ | details | <ul><li>min: 7 tokens</li><li>mean: 8.95 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.6 tokens</li><li>max: 18 tokens</li></ul> |
180
+ * Samples:
181
+ | query | answer |
182
+ |:-----------------------------------------------------|:------------------------------------------------------------------------|
183
+ | <code>Would you like to go on a trip with me?</code> | <code>That sounds amazing, let’s plan it!</code> |
184
+ | <code>Do you believe in luck?</code> | <code>A little, especially when it comes to loot boxes in games.</code> |
185
+ | <code>Do you think we’ll have a happy life?</code> | <code>I know we will, as long as we’re together.</code> |
186
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
187
+ ```json
188
+ {
189
+ "scale": 20.0,
190
+ "similarity_fct": "cos_sim"
191
+ }
192
+ ```
193
+
194
+ ### Training Hyperparameters
195
+ #### Non-Default Hyperparameters
196
+
197
+ - `eval_strategy`: epoch
198
+ - `per_device_eval_batch_size`: 16
199
+ - `learning_rate`: 3e-05
200
+ - `warmup_ratio`: 0.1
201
+ - `fp16`: True
202
+ - `load_best_model_at_end`: True
203
+ - `ddp_find_unused_parameters`: False
204
+
205
+ #### All Hyperparameters
206
+ <details><summary>Click to expand</summary>
207
+
208
+ - `overwrite_output_dir`: False
209
+ - `do_predict`: False
210
+ - `eval_strategy`: epoch
211
+ - `prediction_loss_only`: True
212
+ - `per_device_train_batch_size`: 8
213
+ - `per_device_eval_batch_size`: 16
214
+ - `per_gpu_train_batch_size`: None
215
+ - `per_gpu_eval_batch_size`: None
216
+ - `gradient_accumulation_steps`: 1
217
+ - `eval_accumulation_steps`: None
218
+ - `torch_empty_cache_steps`: None
219
+ - `learning_rate`: 3e-05
220
+ - `weight_decay`: 0.0
221
+ - `adam_beta1`: 0.9
222
+ - `adam_beta2`: 0.999
223
+ - `adam_epsilon`: 1e-08
224
+ - `max_grad_norm`: 1.0
225
+ - `num_train_epochs`: 3
226
+ - `max_steps`: -1
227
+ - `lr_scheduler_type`: linear
228
+ - `lr_scheduler_kwargs`: {}
229
+ - `warmup_ratio`: 0.1
230
+ - `warmup_steps`: 0
231
+ - `log_level`: passive
232
+ - `log_level_replica`: warning
233
+ - `log_on_each_node`: True
234
+ - `logging_nan_inf_filter`: True
235
+ - `save_safetensors`: True
236
+ - `save_on_each_node`: False
237
+ - `save_only_model`: False
238
+ - `restore_callback_states_from_checkpoint`: False
239
+ - `no_cuda`: False
240
+ - `use_cpu`: False
241
+ - `use_mps_device`: False
242
+ - `seed`: 42
243
+ - `data_seed`: None
244
+ - `jit_mode_eval`: False
245
+ - `use_ipex`: False
246
+ - `bf16`: False
247
+ - `fp16`: True
248
+ - `fp16_opt_level`: O1
249
+ - `half_precision_backend`: auto
250
+ - `bf16_full_eval`: False
251
+ - `fp16_full_eval`: False
252
+ - `tf32`: None
253
+ - `local_rank`: 0
254
+ - `ddp_backend`: None
255
+ - `tpu_num_cores`: None
256
+ - `tpu_metrics_debug`: False
257
+ - `debug`: []
258
+ - `dataloader_drop_last`: False
259
+ - `dataloader_num_workers`: 0
260
+ - `dataloader_prefetch_factor`: None
261
+ - `past_index`: -1
262
+ - `disable_tqdm`: False
263
+ - `remove_unused_columns`: True
264
+ - `label_names`: None
265
+ - `load_best_model_at_end`: True
266
+ - `ignore_data_skip`: False
267
+ - `fsdp`: []
268
+ - `fsdp_min_num_params`: 0
269
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
270
+ - `fsdp_transformer_layer_cls_to_wrap`: None
271
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
272
+ - `deepspeed`: None
273
+ - `label_smoothing_factor`: 0.0
274
+ - `optim`: adamw_torch
275
+ - `optim_args`: None
276
+ - `adafactor`: False
277
+ - `group_by_length`: False
278
+ - `length_column_name`: length
279
+ - `ddp_find_unused_parameters`: False
280
+ - `ddp_bucket_cap_mb`: None
281
+ - `ddp_broadcast_buffers`: False
282
+ - `dataloader_pin_memory`: True
283
+ - `dataloader_persistent_workers`: False
284
+ - `skip_memory_metrics`: True
285
+ - `use_legacy_prediction_loop`: False
286
+ - `push_to_hub`: False
287
+ - `resume_from_checkpoint`: None
288
+ - `hub_model_id`: None
289
+ - `hub_strategy`: every_save
290
+ - `hub_private_repo`: None
291
+ - `hub_always_push`: False
292
+ - `gradient_checkpointing`: False
293
+ - `gradient_checkpointing_kwargs`: None
294
+ - `include_inputs_for_metrics`: False
295
+ - `include_for_metrics`: []
296
+ - `eval_do_concat_batches`: True
297
+ - `fp16_backend`: auto
298
+ - `push_to_hub_model_id`: None
299
+ - `push_to_hub_organization`: None
300
+ - `mp_parameters`:
301
+ - `auto_find_batch_size`: False
302
+ - `full_determinism`: False
303
+ - `torchdynamo`: None
304
+ - `ray_scope`: last
305
+ - `ddp_timeout`: 1800
306
+ - `torch_compile`: False
307
+ - `torch_compile_backend`: None
308
+ - `torch_compile_mode`: None
309
+ - `dispatch_batches`: None
310
+ - `split_batches`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: proportional
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | Validation Loss |
328
+ |:-----:|:----:|:-------------:|:---------------:|
329
+ | 0.1 | 1 | 0.7831 | - |
330
+ | 0.2 | 2 | 0.9272 | - |
331
+ | 0.3 | 3 | 0.7335 | - |
332
+ | 0.4 | 4 | 0.6957 | - |
333
+ | 0.5 | 5 | 0.4796 | - |
334
+ | 0.6 | 6 | 0.2245 | - |
335
+ | 0.7 | 7 | 0.2129 | - |
336
+ | 0.8 | 8 | 0.338 | - |
337
+ | 0.9 | 9 | 1.1141 | - |
338
+ | 1.0 | 10 | 0.6196 | 0.5908 |
339
+ | 1.1 | 11 | 0.3008 | - |
340
+ | 1.2 | 12 | 0.3654 | - |
341
+ | 1.3 | 13 | 0.0394 | - |
342
+ | 1.4 | 14 | 0.0445 | - |
343
+ | 1.5 | 15 | 0.6982 | - |
344
+ | 1.6 | 16 | 0.1101 | - |
345
+ | 1.7 | 17 | 0.2731 | - |
346
+ | 1.8 | 18 | 0.3041 | - |
347
+ | 1.9 | 19 | 0.1952 | - |
348
+ | 2.0 | 20 | 0.4233 | 0.4678 |
349
+ | 2.1 | 21 | 0.0712 | - |
350
+ | 2.2 | 22 | 0.3085 | - |
351
+ | 2.3 | 23 | 0.1102 | - |
352
+ | 2.4 | 24 | 0.0956 | - |
353
+ | 2.5 | 25 | 0.5828 | - |
354
+ | 2.6 | 26 | 0.3302 | - |
355
+ | 2.7 | 27 | 0.0757 | - |
356
+ | 2.8 | 28 | 0.3404 | - |
357
+ | 2.9 | 29 | 0.0803 | - |
358
+ | 3.0 | 30 | 0.2285 | 0.4362 |
359
+
360
+
361
+ ### Framework Versions
362
+ - Python: 3.10.16
363
+ - Sentence Transformers: 3.3.1
364
+ - Transformers: 4.48.0
365
+ - PyTorch: 2.4.0
366
+ - Accelerate: 1.2.1
367
+ - Datasets: 3.2.0
368
+ - Tokenizers: 0.21.0
369
+
370
+ ## Citation
371
+
372
+ ### BibTeX
373
+
374
+ #### Sentence Transformers
375
+ ```bibtex
376
+ @inproceedings{reimers-2019-sentence-bert,
377
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
378
+ author = "Reimers, Nils and Gurevych, Iryna",
379
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
380
+ month = "11",
381
+ year = "2019",
382
+ publisher = "Association for Computational Linguistics",
383
+ url = "https://arxiv.org/abs/1908.10084",
384
+ }
385
+ ```
386
+
387
+ #### MultipleNegativesRankingLoss
388
+ ```bibtex
389
+ @misc{henderson2017efficient,
390
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
391
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
392
+ year={2017},
393
+ eprint={1705.00652},
394
+ archivePrefix={arXiv},
395
+ primaryClass={cs.CL}
396
+ }
397
+ ```
398
+
399
+ <!--
400
+ ## Glossary
401
+
402
+ *Clearly define terms in order to be accessible across audiences.*
403
+ -->
404
+
405
+ <!--
406
+ ## Model Card Authors
407
+
408
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
409
+ -->
410
+
411
+ <!--
412
+ ## Model Card Contact
413
+
414
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
415
+ -->
checkpoint-30/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-30/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-30/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86c9a176161e785eb184f708e964f5256ae99a7ea4e66bae8a7764f6d4da0da3
3
+ size 90864192
checkpoint-30/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-30/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b522a7ac4b6865d15f69ccdfb8708824d2bd3367b39b8bd23dd4b058db9131fe
3
+ size 180604922
checkpoint-30/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:289ba0b7372e81dbf3253dbc6224764b7d8dcc14c39b14f357e93d03fac6a946
3
+ size 13990
checkpoint-30/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61694caed75a4de60717c7522cd2bcddf9803313b4abf292318bb17a445487e
3
+ size 1064
checkpoint-30/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-30/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-30/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-30/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-30/trainer_state.json ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4361865520477295,
3
+ "best_model_checkpoint": "autotrain-ya92w-yxh15/checkpoint-30",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 30,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1,
13
+ "grad_norm": 24.40444564819336,
14
+ "learning_rate": 9.999999999999999e-06,
15
+ "loss": 0.7831,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.2,
20
+ "grad_norm": 23.27103042602539,
21
+ "learning_rate": 1.9999999999999998e-05,
22
+ "loss": 0.9272,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.3,
27
+ "grad_norm": 21.968923568725586,
28
+ "learning_rate": 3e-05,
29
+ "loss": 0.7335,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.4,
34
+ "grad_norm": 23.35423469543457,
35
+ "learning_rate": 2.8888888888888888e-05,
36
+ "loss": 0.6957,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.5,
41
+ "grad_norm": 20.305622100830078,
42
+ "learning_rate": 2.777777777777778e-05,
43
+ "loss": 0.4796,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.6,
48
+ "grad_norm": 12.374371528625488,
49
+ "learning_rate": 2.6666666666666667e-05,
50
+ "loss": 0.2245,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.7,
55
+ "grad_norm": 13.582436561584473,
56
+ "learning_rate": 2.5555555555555557e-05,
57
+ "loss": 0.2129,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.8,
62
+ "grad_norm": 14.780226707458496,
63
+ "learning_rate": 2.4444444444444445e-05,
64
+ "loss": 0.338,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.9,
69
+ "grad_norm": 18.406070709228516,
70
+ "learning_rate": 2.3333333333333336e-05,
71
+ "loss": 1.1141,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 1.0,
76
+ "grad_norm": 26.35309600830078,
77
+ "learning_rate": 2.222222222222222e-05,
78
+ "loss": 0.6196,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 1.0,
83
+ "eval_loss": 0.5907698273658752,
84
+ "eval_runtime": 0.167,
85
+ "eval_samples_per_second": 119.789,
86
+ "eval_steps_per_second": 11.979,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 1.1,
91
+ "grad_norm": 14.199936866760254,
92
+ "learning_rate": 2.111111111111111e-05,
93
+ "loss": 0.3008,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 1.2,
98
+ "grad_norm": 16.253868103027344,
99
+ "learning_rate": 1.9999999999999998e-05,
100
+ "loss": 0.3654,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 1.3,
105
+ "grad_norm": 2.541806697845459,
106
+ "learning_rate": 1.888888888888889e-05,
107
+ "loss": 0.0394,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 1.4,
112
+ "grad_norm": 3.1230204105377197,
113
+ "learning_rate": 1.7777777777777777e-05,
114
+ "loss": 0.0445,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 1.5,
119
+ "grad_norm": 15.730467796325684,
120
+ "learning_rate": 1.6666666666666667e-05,
121
+ "loss": 0.6982,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 1.6,
126
+ "grad_norm": 7.290963172912598,
127
+ "learning_rate": 1.5555555555555555e-05,
128
+ "loss": 0.1101,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 1.7,
133
+ "grad_norm": 12.922416687011719,
134
+ "learning_rate": 1.4444444444444444e-05,
135
+ "loss": 0.2731,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 1.8,
140
+ "grad_norm": 11.704672813415527,
141
+ "learning_rate": 1.3333333333333333e-05,
142
+ "loss": 0.3041,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 1.9,
147
+ "grad_norm": 8.42138671875,
148
+ "learning_rate": 1.2222222222222222e-05,
149
+ "loss": 0.1952,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 2.0,
154
+ "grad_norm": 17.77881622314453,
155
+ "learning_rate": 1.111111111111111e-05,
156
+ "loss": 0.4233,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 2.0,
161
+ "eval_loss": 0.46783447265625,
162
+ "eval_runtime": 0.1727,
163
+ "eval_samples_per_second": 115.815,
164
+ "eval_steps_per_second": 11.582,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 2.1,
169
+ "grad_norm": 4.311058521270752,
170
+ "learning_rate": 9.999999999999999e-06,
171
+ "loss": 0.0712,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 2.2,
176
+ "grad_norm": 15.044136047363281,
177
+ "learning_rate": 8.888888888888888e-06,
178
+ "loss": 0.3085,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 2.3,
183
+ "grad_norm": 7.441744327545166,
184
+ "learning_rate": 7.777777777777777e-06,
185
+ "loss": 0.1102,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 2.4,
190
+ "grad_norm": 6.456233501434326,
191
+ "learning_rate": 6.666666666666667e-06,
192
+ "loss": 0.0956,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 2.5,
197
+ "grad_norm": 15.906267166137695,
198
+ "learning_rate": 5.555555555555555e-06,
199
+ "loss": 0.5828,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 2.6,
204
+ "grad_norm": 17.452451705932617,
205
+ "learning_rate": 4.444444444444444e-06,
206
+ "loss": 0.3302,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 2.7,
211
+ "grad_norm": 3.34293532371521,
212
+ "learning_rate": 3.3333333333333333e-06,
213
+ "loss": 0.0757,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 2.8,
218
+ "grad_norm": 11.328041076660156,
219
+ "learning_rate": 2.222222222222222e-06,
220
+ "loss": 0.3404,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 2.9,
225
+ "grad_norm": 4.616335391998291,
226
+ "learning_rate": 1.111111111111111e-06,
227
+ "loss": 0.0803,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 3.0,
232
+ "grad_norm": 16.229263305664062,
233
+ "learning_rate": 0.0,
234
+ "loss": 0.2285,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 3.0,
239
+ "eval_loss": 0.4361865520477295,
240
+ "eval_runtime": 0.1999,
241
+ "eval_samples_per_second": 100.064,
242
+ "eval_steps_per_second": 10.006,
243
+ "step": 30
244
+ }
245
+ ],
246
+ "logging_steps": 1,
247
+ "max_steps": 30,
248
+ "num_input_tokens_seen": 0,
249
+ "num_train_epochs": 3,
250
+ "save_steps": 500,
251
+ "stateful_callbacks": {
252
+ "EarlyStoppingCallback": {
253
+ "args": {
254
+ "early_stopping_patience": 5,
255
+ "early_stopping_threshold": 0.01
256
+ },
257
+ "attributes": {
258
+ "early_stopping_patience_counter": 0
259
+ }
260
+ },
261
+ "TrainerControl": {
262
+ "args": {
263
+ "should_epoch_stop": false,
264
+ "should_evaluate": false,
265
+ "should_log": false,
266
+ "should_save": true,
267
+ "should_training_stop": true
268
+ },
269
+ "attributes": {}
270
+ }
271
+ },
272
+ "total_flos": 0.0,
273
+ "train_batch_size": 8,
274
+ "trial_name": null,
275
+ "trial_params": null
276
+ }
checkpoint-30/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:787f01ec321fbc30a0fffb91db2ffd596c352c58493ddc716d16aef931550cc1
3
+ size 5624
checkpoint-30/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86c9a176161e785eb184f708e964f5256ae99a7ea4e66bae8a7764f6d4da0da3
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Jan17_05-29-30_r-harumix-waifu-chat-okxm6y22-0d766-fobr7/events.out.tfevents.1737091773.r-harumix-waifu-chat-okxm6y22-0d766-fobr7.105.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:12d472d4f8ee6a446bac3770764f272eedd427fbc30f170a5e71060bdfcffdf0
3
- size 4419
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b44597dcd3ee369df7b221aaee63737686ce393aa27a618e82147a4571e5493
3
+ size 11775
runs/Jan17_05-29-30_r-harumix-waifu-chat-okxm6y22-0d766-fobr7/events.out.tfevents.1737091791.r-harumix-waifu-chat-okxm6y22-0d766-fobr7.105.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cb1fde5ab68a5de7a9c9f5e57f0a5c19009a78fcf12a1d4125345912f701c9f
3
+ size 354
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:787f01ec321fbc30a0fffb91db2ffd596c352c58493ddc716d16aef931550cc1
3
+ size 5624
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-ya92w-yxh15/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-ya92w-yxh15",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "harumix",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "qa",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff