Upload Untitled2.ipynb
Browse files- Untitled2.ipynb +57 -3
Untitled2.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "2a0f61a3",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
@@ -10,12 +10,43 @@
|
|
10 |
"name": "stdout",
|
11 |
"output_type": "stream",
|
12 |
"text": [
|
13 |
-
"Accuracy: 0.8417508417508418\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
]
|
15 |
}
|
16 |
],
|
17 |
"source": [
|
18 |
"import pandas as pd\n",
|
|
|
|
|
19 |
"from sklearn.compose import ColumnTransformer\n",
|
20 |
"from sklearn.ensemble import RandomForestClassifier\n",
|
21 |
"from sklearn.impute import SimpleImputer\n",
|
@@ -60,7 +91,30 @@
|
|
60 |
"\n",
|
61 |
"# Evaluate the model\n",
|
62 |
"accuracy = pipeline.score(X_test, y_test)\n",
|
63 |
-
"print('Accuracy:', accuracy)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
},
|
66 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
"id": "2a0f61a3",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
|
|
10 |
"name": "stdout",
|
11 |
"output_type": "stream",
|
12 |
"text": [
|
13 |
+
"Accuracy: 0.8417508417508418\n",
|
14 |
+
" * Serving Flask app \"__main__\" (lazy loading)\n",
|
15 |
+
" * Environment: production\n",
|
16 |
+
"\u001b[31m WARNING: This is a development server. Do not use it in a production deployment.\u001b[0m\n",
|
17 |
+
"\u001b[2m Use a production WSGI server instead.\u001b[0m\n",
|
18 |
+
" * Debug mode: on\n"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"name": "stderr",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
" * Restarting with watchdog (windowsapi)\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"ename": "SystemExit",
|
30 |
+
"evalue": "1",
|
31 |
+
"output_type": "error",
|
32 |
+
"traceback": [
|
33 |
+
"An exception has occurred, use %tb to see the full traceback.\n",
|
34 |
+
"\u001b[1;31mSystemExit\u001b[0m\u001b[1;31m:\u001b[0m 1\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"C:\\Users\\91958\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3377: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.\n",
|
42 |
+
" warn(\"To exit: use 'exit', 'quit', or Ctrl-D.\", stacklevel=1)\n"
|
43 |
]
|
44 |
}
|
45 |
],
|
46 |
"source": [
|
47 |
"import pandas as pd\n",
|
48 |
+
"from flask import Flask, request, jsonify\n",
|
49 |
+
"\n",
|
50 |
"from sklearn.compose import ColumnTransformer\n",
|
51 |
"from sklearn.ensemble import RandomForestClassifier\n",
|
52 |
"from sklearn.impute import SimpleImputer\n",
|
|
|
91 |
"\n",
|
92 |
"# Evaluate the model\n",
|
93 |
"accuracy = pipeline.score(X_test, y_test)\n",
|
94 |
+
"print('Accuracy:', accuracy)\n",
|
95 |
+
"\n",
|
96 |
+
"# Create Flask app\n",
|
97 |
+
"app = Flask(__name__)\n",
|
98 |
+
"\n",
|
99 |
+
"# Define API route for making predictions\n",
|
100 |
+
"@app.route('/predict', methods=['POST'])\n",
|
101 |
+
"def predict():\n",
|
102 |
+
" # Get input data from request\n",
|
103 |
+
" data = request.get_json()\n",
|
104 |
+
"\n",
|
105 |
+
" # Convert input data to dataframe\n",
|
106 |
+
" input_data = pd.DataFrame(data, index=[0])\n",
|
107 |
+
"\n",
|
108 |
+
" # Make predictions using the trained pipeline\n",
|
109 |
+
" predictions = pipeline.predict(input_data)\n",
|
110 |
+
"\n",
|
111 |
+
" # Prepare response\n",
|
112 |
+
" response = {'prediction': predictions[0]}\n",
|
113 |
+
" return jsonify(response)\n",
|
114 |
+
"\n",
|
115 |
+
"# Run the Flask app\n",
|
116 |
+
"if __name__ == '__main__':\n",
|
117 |
+
" app.run(debug=True)\n"
|
118 |
]
|
119 |
},
|
120 |
{
|