harshiv commited on
Commit
76e8474
·
1 Parent(s): 2b3c741

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -104
model.py DELETED
@@ -1,104 +0,0 @@
1
- import numpy as np
2
- import pandas as pd
3
- from sklearn.model_selection import train_test_split
4
- from sklearn.linear_model import LogisticRegression
5
- from sklearn.neighbors import KNeighborsClassifier
6
- from sklearn import svm
7
- from sklearn.tree import DecisionTreeClassifier
8
- from sklearn.ensemble import RandomForestClassifier
9
- from sklearn.ensemble import GradientBoostingClassifier
10
- from xgboost import XGBClassifier
11
- from sklearn.metrics import accuracy_score
12
- import joblib
13
- import pickle
14
- import onnx
15
- import random
16
-
17
-
18
- df=pd.read_csv("Placement (2).csv")
19
- df.head()
20
-
21
- df=df.drop(columns=["sl_no","stream","ssc_p","ssc_b","hsc_p","hsc_b","etest_p"])
22
- df['internship'] = df['internship'].map({'Yes':random.randint(0,5),'No':0})
23
- df['status'] = df['status'].map({'Placed':1,'Not Placed':0})
24
- df.head()
25
- X_fullstk= df.drop(['status','management','leadership','communication','sales'],axis=1)
26
- y= df['status']
27
- X_prodengg=df.drop(['status','DSA','java','communication','sales'],axis=1)
28
- X_mkt=df.drop(['status','management','leadership','DSA','java'],axis=1)
29
- X_train_fullstk,X_test_fullstk,y_train,y_test=train_test_split(X_fullstk,y,test_size=0.20,random_state=42)
30
- X_train_prodengg,X_test_prodengg,y_train,y_test=train_test_split(X_prodengg,y,test_size=0.20,random_state=42)
31
- X_train_mkt,X_test_mkt,y_train,y_test=train_test_split(X_mkt,y,test_size=0.20,random_state=42)
32
- rf_fullstk = RandomForestClassifier()
33
- rf_fullstk.fit(X_train_fullstk,y_train)
34
-
35
- rf_prodengg=RandomForestClassifier()
36
- rf_prodengg.fit(X_train_prodengg,y_train)
37
-
38
- rf_mkt=RandomForestClassifier()
39
- rf_mkt.fit(X_train_mkt,y_train)
40
-
41
- y_pred_full = rf_fullstk.predict(X_test_fullstk)
42
- y_pred_prodengg = rf_prodengg.predict(X_test_prodengg)
43
- y_pred_mkt = rf_mkt.predict(X_test_mkt)
44
- score1=accuracy_score(y_test,y_pred_full)
45
- score2=accuracy_score(y_test,y_pred_prodengg)
46
- score3=accuracy_score(y_test,y_pred_mkt)
47
- rf_fullstk.fit(X_fullstk,y)
48
- rf_mkt.fit(X_mkt,y)
49
- rf_prodengg.fit(X_prodengg,y)
50
-
51
- new_data_fullstk = pd.DataFrame({
52
- 'degree_p':75,
53
- 'internship':1,
54
- 'DSA':1,
55
- 'java':0,
56
- },index=[0])
57
-
58
- new_data_prodeng = pd.DataFrame({
59
- 'degree_p':75,
60
- 'internship':0,
61
- 'management':1,
62
- 'leadership':0,
63
- },index=[0])
64
-
65
- new_data_mkt = pd.DataFrame({
66
- 'degree_p':75,
67
- 'internship':0,
68
- 'communication':0,
69
- 'sales':1,
70
- },index=[0])
71
-
72
- (rf_fullstk.feature_importances_)
73
- (rf_mkt.feature_importances_)
74
-
75
- p_fstk=rf_fullstk.predict(new_data_fullstk)
76
- prob_fstk=rf_fullstk.predict_proba(new_data_fullstk)
77
- if p_fstk==1:
78
- print('Placed')
79
- print(f"You will be placed with probability of {prob_fstk[0][1]:.2f}")
80
- else:
81
- print("Not-placed")
82
-
83
- p_prodeng=rf_prodengg.predict(new_data_prodeng)
84
- prob_prdeng=rf_prodengg.predict_proba(new_data_prodeng)
85
- if p_prodeng==1:
86
- print('Placed')
87
- print(f"You will be placed with probability of {prob_prdeng[0][1]:.2f}")
88
- else:
89
- print("Not-placed")
90
-
91
- p_mkt=rf_mkt.predict(new_data_mkt)
92
- prob_mkt=rf_mkt.predict_proba(new_data_mkt)
93
- if p_mkt==1:
94
- print('Placed')
95
- print(f"You will be placed with probability of {prob_mkt[0][1]:.2f}")
96
- else:
97
- print("Not-placed")
98
-
99
- with open('rf_hacathon_fullstk.pkl', 'wb') as f1:
100
- pickle.dump(rf_fullstk, f1)
101
- with open('rf_hacathon_prodengg.pkl', 'wb') as f2:
102
- pickle.dump(rf_prodengg, f2)
103
- with open('rf_hacathon_mkt.pkl', 'wb') as f3:
104
- pickle.dump(rf_mkt, f3)