File size: 9,267 Bytes
50704de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from typing import Any
import argparse
import pathlib
import torch
from torch import nn
from sam2.build_sam import build_sam2
from sam2.modeling.sam2_base import SAM2Base
class SAM2ImageEncoder(nn.Module):
def __init__(self, sam_model: SAM2Base) -> None:
super().__init__()
self.model = sam_model
self.image_encoder = sam_model.image_encoder
self.no_mem_embed = sam_model.no_mem_embed
def forward(self, x: torch.Tensor) -> tuple[Any, Any, Any]:
backbone_out = self.image_encoder(x)
backbone_out["backbone_fpn"][0] = self.model.sam_mask_decoder.conv_s0(
backbone_out["backbone_fpn"][0]
)
backbone_out["backbone_fpn"][1] = self.model.sam_mask_decoder.conv_s1(
backbone_out["backbone_fpn"][1]
)
feature_maps = backbone_out["backbone_fpn"][
-self.model.num_feature_levels :
]
vision_pos_embeds = backbone_out["vision_pos_enc"][
-self.model.num_feature_levels :
]
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
# flatten NxCxHxW to HWxNxC
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
vision_feats[-1] = vision_feats[-1] + self.no_mem_embed
feats = [
feat.permute(1, 2, 0).reshape(1, -1, *feat_size)
for feat, feat_size in zip(vision_feats[::-1], feat_sizes[::-1])
][::-1]
return feats[0], feats[1], feats[2]
class SAM2ImageDecoder(nn.Module):
def __init__(self, sam_model: SAM2Base, multimask_output: bool) -> None:
super().__init__()
self.mask_decoder = sam_model.sam_mask_decoder
self.prompt_encoder = sam_model.sam_prompt_encoder
self.model = sam_model
self.img_size = sam_model.image_size
self.multimask_output = multimask_output
@torch.no_grad()
def forward(
self,
image_embed: torch.Tensor,
high_res_feats_0: torch.Tensor,
high_res_feats_1: torch.Tensor,
point_coords: torch.Tensor,
point_labels: torch.Tensor,
orig_im_size: torch.Tensor,
mask_input: torch.Tensor,
has_mask_input: torch.Tensor,
):
sparse_embedding = self._embed_points(point_coords, point_labels)
self.sparse_embedding = sparse_embedding
dense_embedding = self._embed_masks(mask_input, has_mask_input)
high_res_feats = [high_res_feats_0, high_res_feats_1]
image_embed = image_embed
masks, iou_predictions, _, _ = self.mask_decoder.predict_masks(
image_embeddings=image_embed,
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embedding,
dense_prompt_embeddings=dense_embedding,
repeat_image=False,
high_res_features=high_res_feats,
)
if self.multimask_output:
masks = masks[:, 1:, :, :]
iou_predictions = iou_predictions[:, 1:]
else:
masks, iou_predictions = (
self.mask_decoder._dynamic_multimask_via_stability(
masks, iou_predictions
)
)
masks = torch.clamp(masks, -32.0, 32.0)
return masks, iou_predictions
def _embed_points(
self, point_coords: torch.Tensor, point_labels: torch.Tensor
) -> torch.Tensor:
point_coords = point_coords + 0.5
padding_point = torch.zeros(
(point_coords.shape[0], 1, 2), device=point_coords.device
)
padding_label = -torch.ones(
(point_labels.shape[0], 1), device=point_labels.device
)
point_coords = torch.cat([point_coords, padding_point], dim=1)
point_labels = torch.cat([point_labels, padding_label], dim=1)
point_coords[:, :, 0] = point_coords[:, :, 0] / self.model.image_size
point_coords[:, :, 1] = point_coords[:, :, 1] / self.model.image_size
point_embedding = self.prompt_encoder.pe_layer._pe_encoding(
point_coords
)
point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
point_embedding = point_embedding * (point_labels != -1)
point_embedding = (
point_embedding
+ self.prompt_encoder.not_a_point_embed.weight
* (point_labels == -1)
)
for i in range(self.prompt_encoder.num_point_embeddings):
point_embedding = (
point_embedding
+ self.prompt_encoder.point_embeddings[i].weight
* (point_labels == i)
)
return point_embedding
def _embed_masks(
self, input_mask: torch.Tensor, has_mask_input: torch.Tensor
) -> torch.Tensor:
mask_embedding = has_mask_input * self.prompt_encoder.mask_downscaling(
input_mask
)
mask_embedding = mask_embedding + (
1 - has_mask_input
) * self.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
return mask_embedding
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Export the SAM2 prompt encoder and mask decoder to an ONNX model."
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="The path to the SAM model checkpoint.",
)
parser.add_argument(
"--output_encoder",
type=str,
required=True,
help="The filename to save the encoder ONNX model to.",
)
parser.add_argument(
"--output_decoder",
type=str,
required=True,
help="The filename to save the decoder ONNX model to.",
)
parser.add_argument(
"--model_type",
type=str,
required=True,
help="In the form of sam2_hiera_{tiny, small, base_plus, large}.",
)
parser.add_argument(
"--opset",
type=int,
default=17,
help="The ONNX opset version to use. Must be >=11",
)
args = parser.parse_args()
input_size = (1024, 1024)
multimask_output = False
model_type = args.model_type
if model_type == "sam2.1_hiera_tiny":
model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
elif model_type == "sam2.1_hiera_small":
model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
elif model_type == "sam2.1_hiera_base_plus":
model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
elif model_type == "sam2.1_hiera_large":
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
else:
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, args.checkpoint, device="cpu")
img = torch.randn(1, 3, input_size[0], input_size[1]).cpu()
sam2_encoder = SAM2ImageEncoder(sam2_model).cpu()
high_res_feats_0, high_res_feats_1, image_embed = sam2_encoder(img)
pathlib.Path(args.output_encoder).parent.mkdir(parents=True, exist_ok=True)
torch.onnx.export(
sam2_encoder,
img,
args.output_encoder,
export_params=True,
opset_version=args.opset,
do_constant_folding=True,
input_names=["image"],
output_names=["high_res_feats_0", "high_res_feats_1", "image_embed"],
)
print("Saved encoder to", args.output_encoder)
sam2_decoder = SAM2ImageDecoder(
sam2_model, multimask_output=multimask_output
).cpu()
embed_dim = sam2_model.sam_prompt_encoder.embed_dim
embed_size = (
sam2_model.image_size // sam2_model.backbone_stride,
sam2_model.image_size // sam2_model.backbone_stride,
)
mask_input_size = [4 * x for x in embed_size]
print(embed_dim, embed_size, mask_input_size)
point_coords = torch.randint(
low=0, high=input_size[1], size=(1, 5, 2), dtype=torch.float
)
point_labels = torch.randint(low=0, high=1, size=(1, 5), dtype=torch.float)
mask_input = torch.randn(1, 1, *mask_input_size, dtype=torch.float)
has_mask_input = torch.tensor([1], dtype=torch.float)
orig_im_size = torch.tensor([input_size[0], input_size[1]], dtype=torch.int)
pathlib.Path(args.output_decoder).parent.mkdir(parents=True, exist_ok=True)
torch.onnx.export(
sam2_decoder,
(
image_embed,
high_res_feats_0,
high_res_feats_1,
point_coords,
point_labels,
orig_im_size,
mask_input,
has_mask_input,
),
args.output_decoder,
export_params=True,
opset_version=args.opset,
do_constant_folding=True,
input_names=[
"image_embed",
"high_res_feats_0",
"high_res_feats_1",
"point_coords",
"point_labels",
"orig_im_size",
"mask_input",
"has_mask_input",
],
output_names=["masks", "iou_predictions"],
dynamic_axes={
"point_coords": {0: "num_labels", 1: "num_points"},
"point_labels": {0: "num_labels", 1: "num_points"},
"mask_input": {0: "num_labels"},
"has_mask_input": {0: "num_labels"},
},
)
print("Saved decoder to", args.output_decoder) |