--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-11B-Vision-Instruct tags: - trl - sft - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine-tuned-visionllama results: [] --- # fine-tuned-visionllama This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2764 - Accuracy: 0.0262 - F1: 0.0263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.6989 | 0.9778 | 22 | 0.6079 | 0.0001 | 0.0001 | | 0.3177 | 1.9556 | 44 | 0.2764 | 0.0262 | 0.0263 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3