File size: 2,913 Bytes
1bce8c1 c79a1aa 1bce8c1 d5a3dcf 1bce8c1 d5a3dcf 1bce8c1 a441430 1bce8c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
metrics:
- accuracy
model-index:
- name: layer-project
results: []
datasets:
- hanyinwang/layer-project-reward-training
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layer-project
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0064
- Accuracy: 1.0
## Model description
The model is fine-tuned as a reward function for RLHF finetuning.
## Intended uses & limitations
The model is trained on very limited data.
## Training and evaluation data
[hanyinwang/layer-project-reward-training](https://huggingface.co/datasets/hanyinwang/layer-project-reward-training)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0365 | 1.0 | 5 | 0.0393 | 1.0 |
| 0.0142 | 2.0 | 10 | 0.0349 | 1.0 |
| 0.0228 | 3.0 | 15 | 0.0295 | 1.0 |
| 0.0157 | 4.0 | 20 | 0.0249 | 1.0 |
| 0.0153 | 5.0 | 25 | 0.0211 | 1.0 |
| 0.0117 | 6.0 | 30 | 0.0181 | 1.0 |
| 0.0072 | 7.0 | 35 | 0.0155 | 1.0 |
| 0.0121 | 8.0 | 40 | 0.0135 | 1.0 |
| 0.0097 | 9.0 | 45 | 0.0119 | 1.0 |
| 0.008 | 10.0 | 50 | 0.0106 | 1.0 |
| 0.0055 | 11.0 | 55 | 0.0095 | 1.0 |
| 0.0046 | 12.0 | 60 | 0.0087 | 1.0 |
| 0.0085 | 13.0 | 65 | 0.0081 | 1.0 |
| 0.0046 | 14.0 | 70 | 0.0076 | 1.0 |
| 0.0059 | 15.0 | 75 | 0.0072 | 1.0 |
| 0.0044 | 16.0 | 80 | 0.0069 | 1.0 |
| 0.0021 | 17.0 | 85 | 0.0067 | 1.0 |
| 0.0039 | 18.0 | 90 | 0.0066 | 1.0 |
| 0.0027 | 19.0 | 95 | 0.0065 | 1.0 |
| 0.0039 | 20.0 | 100 | 0.0064 | 1.0 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |