hanxunh commited on
Commit
edf97b2
·
verified ·
1 Parent(s): edfbd47

Push model using huggingface_hub.

Browse files
Files changed (1) hide show
  1. README.md +5 -73
README.md CHANGED
@@ -1,79 +1,11 @@
1
  ---
2
  library_name: XTransferBench
3
- license: mit
4
- pipeline_tag: image-to-image
5
  tags:
6
- - not-for-all-audiences
7
- - pytorch_model_hub_mixin
8
  - model_hub_mixin
 
9
  ---
10
 
11
- # X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
12
- <div align="center">
13
- <a href="https://arxiv.org/abs/2505.05528" target="_blank"><img src="https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv" alt="arXiv"></a>
14
- <a href="https://github.com/HanxunH/XTransferBench" target="_blank"><img src="https://img.shields.io/badge/GitHub-code-blue" alt="GitHub"></a>
15
- <a href="https://huggingface.co/spaces/hanxunh/XTransferBench-UAP-Linf" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Spaces-blue" alt="HuggingFace Spaces"></a>
16
- </div>
17
-
18
- Baseline attacker [GD-UAP](https://arxiv.org/abs/1801.08092) used in ICML2025 paper ["X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP"](https://arxiv.org/abs/2505.05528)
19
-
20
- ---
21
-
22
- ## X-TransferBench
23
- X-TransferBench is an open-source benchmark that provides a comprehensive collection of UAPs/TUAPs capable of achieving universal adversarial transferability. These UAPs can simultaneously **transfer across data,\xa0domains,\xa0models**, and **tasks**. Essentially, they represent perturbations that can transform any sample into an adversarial example, effective against any model and for any task.
24
-
25
- ## Model Details
26
-
27
- - Surrogate Model: ResNet
28
- - Surrogate Dataset:
29
- - Threat Model: L_inf_eps=12/255
30
- - Perturbation Size: 3 x 513 x 513
31
-
32
-
33
- ---
34
- ## Model Usage
35
-
36
- ```python
37
- import XTransferBench
38
- import XTransferBench.zoo
39
-
40
- # List threat models
41
- print(XTransferBench.zoo.list_threat_model())
42
-
43
- # List UAPs under L_inf threat model
44
- print(XTransferBench.zoo.list_attacker('linf_non_targeted'))
45
-
46
- # Load X-Transfer with the Large search space (N=64) non-targeted
47
- attacker = XTransferBench.zoo.load_attacker('linf_non_targeted', 'xtransfer_large_linf_eps12_non_targeted')
48
-
49
- # Perturbe images to adversarial example
50
- images = # Tensor [b, 3, h, w]
51
- adv_images = attacker(images) # adversarial examples
52
- ```
53
-
54
- ---
55
-
56
- ## Citation
57
- If you use this model in your work, please cite the accompanying paper:
58
-
59
-
60
- ```
61
- @article{mopuri2018generalizable,
62
- title={Generalizable data-free objective for crafting universal adversarial perturbations},
63
- author={Mopuri, Konda Reddy and Ganeshan, Aditya and Babu, R Venkatesh},
64
- journal={TPAMI},
65
- year={2018},
66
- }
67
- ```
68
-
69
-
70
- ```
71
- @inproceedings{
72
- huang2025xtransfer,
73
- title={X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP},
74
- author={Hanxun Huang and Sarah Erfani and Yige Li and Xingjun Ma and James Bailey},
75
- booktitle={ICML},
76
- year={2025},
77
- }
78
-
79
- ```
 
1
  ---
2
  library_name: XTransferBench
 
 
3
  tags:
 
 
4
  - model_hub_mixin
5
+ - pytorch_model_hub_mixin
6
  ---
7
 
8
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
9
+ - Code: [More Information Needed]
10
+ - Paper: [More Information Needed]
11
+ - Docs: [More Information Needed]