hanxunh commited on
Commit
1b3f082
·
verified ·
1 Parent(s): 5f032d1

Push model using huggingface_hub.

Browse files
Files changed (2) hide show
  1. README.md +5 -62
  2. config.json +2 -1
README.md CHANGED
@@ -1,68 +1,11 @@
1
  ---
2
  library_name: XTransferBench
3
- license: mit
4
- pipeline_tag: zero-shot-classification
5
  tags:
6
- - not-for-all-audiences
7
- - pytorch_model_hub_mixin
8
  - model_hub_mixin
 
9
  ---
10
 
11
-
12
- # X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
13
- <div align="center">
14
- <a href="https://" target="_blank"><img src="https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv" alt="arXiv"></a>
15
- </div>
16
-
17
- Baseline attacker [GD-UAP](https://arxiv.org/abs/1801.08092) used ICML2025 paper ["X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP"](https://)
18
-
19
- ---
20
-
21
- ## X-TransferBench
22
- X-TransferBench is an open-source benchmark that provides a comprehensive collection of UAPs/TUAPs capable of achieving universal adversarial transferability. These UAPs can simultaneously **transfer across data, domains, models**, and **tasks**. Essentially, they represent perturbations that can transform any sample into an adversarial example, effective against any model and for any task.
23
-
24
- ## Model Details
25
-
26
- - Surrogate Model: ResNet
27
- - Surrogate Dataset:
28
- - Threat Model: L_inf_eps=12/255
29
- - Perturbation Size: 3 x 513 x 513
30
-
31
- ---
32
- ## Model Usage
33
-
34
- ```python
35
- from XTransferBench import attacker
36
-
37
- attacker = XTransferBench.zoo.load_attacker("linf_non_targeted", "gd_uap_dl_resnet_msc_with_all_data")
38
- images = # torch.Tensor [b, 3, h, w], values should be between 0 and 1
39
- adv_images = attacker(images) # adversarial examples
40
- ```
41
-
42
- ---
43
-
44
- ## Citation
45
- If you use this model in your work, please cite the accompanying paper:
46
-
47
-
48
- ```
49
- @article{mopuri2018generalizable,
50
- title={Generalizable data-free objective for crafting universal adversarial perturbations},
51
- author={Mopuri, Konda Reddy and Ganeshan, Aditya and Babu, R Venkatesh},
52
- journal={TPAMI},
53
- year={2018},
54
- }
55
- ```
56
-
57
-
58
- ```
59
- @inproceedings{
60
- huang2025xtransfer,
61
- title={X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP},
62
- author={Hanxun Huang and Sarah Erfani and Yige Li and Xingjun Ma and James Bailey},
63
- booktitle={ICML},
64
- year={2025},
65
- }
66
-
67
- ```
68
-
 
1
  ---
2
  library_name: XTransferBench
 
 
3
  tags:
 
 
4
  - model_hub_mixin
5
+ - pytorch_model_hub_mixin
6
  ---
7
 
8
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
9
+ - Code: [More Information Needed]
10
+ - Paper: [More Information Needed]
11
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,6 @@
1
  {
2
  "checkpoint_path": "/data/gpfs/projects/punim0784/hanxunh/XTransferBench/checkpoints/gduap/gd_uap_dl_resnet_msc_with_all_data.pt",
3
  "epsilon": 0.047058823529411764,
4
- "image_size": 513
 
5
  }
 
1
  {
2
  "checkpoint_path": "/data/gpfs/projects/punim0784/hanxunh/XTransferBench/checkpoints/gduap/gd_uap_dl_resnet_msc_with_all_data.pt",
3
  "epsilon": 0.047058823529411764,
4
+ "image_size": 513,
5
+ "target_text": null
6
  }