habanoz commited on
Commit
081db4e
·
1 Parent(s): 74b50d2

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1835.72 +/- 163.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e722f82967d9436e1fad5ab707e074734da09f4a2d5a0646e226c362714917
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb1c161e0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb1c161e160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb1c161e1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb1c161e280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb1c161e310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb1c161e3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb1c161e430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb1c161e4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb1c161e550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb1c161e5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb1c161e670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb1c161e700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb1c1620060>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674046700476333476,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJp54D86qR4/4fQsPshfDUAYrQhAtof2PlzngD+GOYe/wrtOPzJFPb6R2Ds/MZ6sv3gP9z8XdP4/EKuWvj40lj89oEk/AazIP/3TqD75JrO/b9GSv7b4pD1e6tU/FQsEP8prjL9KSQ0/1FOlPnt6Iz+mCAdAPweWPyLeL78poKE/+9XgP4dyWb4dYOM/Z2yyv6A8LL8a99M9UnY4vvxQ7r+28/U/XqIRvnYygr8/p7a+VBagvzDbWj+JtLc+LzD5vo8SlL+qsic+xANdP9tIST/Ka4y/H+3nv9RTpT57eiM/2V2nPKGRCj+93Hw+xmtmv0ODAj73ymk+TWs5P3rJlTyqKqO/IM+1PxGIWT90onE+GVgfvwnP0L81k6s+ogspPNRYVzzEbqA/QznxPlia/bqFl8c/GCFZQAoDJ79tFlo/9VppPx/t57/UU6U+PXHIv+HDhz+qgFa/9aMxPwWkPT+tGJ0/XSxTwBHohj/Jpma+4jWHv1ZkbsCa0NW93lDFPzURlD+hudC/oJj1vYKBG798hOw+peJzPYpqkT4Or0Y/QogIv31aij8zMJG+9LKcwMprjL8f7ee/1FOlPj1xyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACjtBS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANydiPQAAAADZk9+/AAAAAEA/T70AAAAAVSzrPwAAAACS5fU9AAAAAPOc7z8AAAAAD97cPQAAAADqae2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0n6uNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKzlq70AAAAASLzfvwAAAADqfQ8+AAAAADbp8z8AAAAA5DDQPQAAAABdH/I/AAAAAAAQwj0AAAAABCvxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEb6srUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDRjJg9AAAAAO8HAMAAAAAAa107PQAAAADXI9k/AAAAAAB6xLwAAAAATm7dPwAAAAAcgD48AAAAAMq2978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwIao2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/+LUvQAAAAA/w/a/AAAAAC8N1jwAAAAA9toAQAAAAAAakQM+AAAAAA0Z3z8AAAAAR0DpPAAAAAAe6eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUfGojv/iqMAWyUTegDjAF0lEdAvli0Z5zHTHV9lChoBkdAlkodM495hWgHTegDaAhHQL5ZKD28IzF1fZQoaAZHQJV7HdN34bloB03oA2gIR0C+W4DYEnstdX2UKGgGR0CS3cZ8rqdIaAdN6ANoCEdAvlwCqLjxTnV9lChoBkdAlZYnn+yZ8mgHTegDaAhHQL5e8oA4n4R1fZQoaAZHQJfNeqjrRjVoB03oA2gIR0C+X2DJU5uJdX2UKGgGR0CYw3ZEDyOJaAdN6ANoCEdAvmHCP/7zkXV9lChoBkdAk5G5BC2MKmgHTegDaAhHQL5iQ5jYqXp1fZQoaAZHQJioRT1kDp1oB03oA2gIR0C+ZSD9sJpndX2UKGgGR0CYILfAbhm5aAdN6ANoCEdAvmWQ12q1gHV9lChoBkdAmS6a2OQyRGgHTegDaAhHQL5n5Km8/Ux1fZQoaAZHQJZHLXGwRoRoB03oA2gIR0C+aGYChew+dX2UKGgGR0CYcik7wKBvaAdN6ANoCEdAvms+jFhod3V9lChoBkdAlpwwyEcsDmgHTegDaAhHQL5rqx7zCk51fZQoaAZHQJgLWXmeUY9oB03oA2gIR0C+bgZ2ll9SdX2UKGgGR0CV3fQ53kgfaAdN6ANoCEdAvm6Ln9vS+nV9lChoBkdAmAxJ79hqkGgHTegDaAhHQL5xXkJ8fFJ1fZQoaAZHQJj+qXE61b9oB03oA2gIR0C+cc/x2B8QdX2UKGgGR0CWXkLidat+aAdN6ANoCEdAvnQ5CzC1qnV9lChoBkdAlAT5lBhQWWgHTegDaAhHQL50tYeDFqB1fZQoaAZHQJaoID+zdDZoB03oA2gIR0C+d5RfShJzdX2UKGgGR0CVt41XeWOZaAdN6ANoCEdAvngAtmL9/HV9lChoBkdAmK623jMmnmgHTegDaAhHQL56WCvX9R91fZQoaAZHQJdU97mdRSBoB03oA2gIR0C+etb26ClKdX2UKGgGR0CYTBPmxMWXaAdN6ANoCEdAvn29C9h7V3V9lChoBkdAl+fXnlnyu2gHTegDaAhHQL5+Li/fwZx1fZQoaAZHQJkkuIAOrhloB03oA2gIR0C+gJj/IbOvdX2UKGgGR0CYRIYraufVaAdN6ANoCEdAvoEb/7zkIXV9lChoBkdAlyP9Iwudw2gHTegDaAhHQL6D+hHbypd1fZQoaAZHQJfktPP9kz5oB03oA2gIR0C+hGhu4wyqdX2UKGgGR0CXBsdVNpM6aAdN6ANoCEdAvobPA57w8XV9lChoBkdAmYqDI3irDWgHTegDaAhHQL6HU2gWac91fZQoaAZHQJqEz/zasZJoB03oA2gIR0C+ii5RXOnmdX2UKGgGR0CZG6XQdCE6aAdN6ANoCEdAvoqaJwbVBnV9lChoBkdAmwf5c9nscGgHTegDaAhHQL6M+kPMB6t1fZQoaAZHQJlvk6QvHtFoB03oA2gIR0C+jXjujRD1dX2UKGgGR0CZPYuNgjQiaAdN6ANoCEdAvpBWIj4YanV9lChoBkdAlz1tkjHGTGgHTegDaAhHQL6Qzv8ZUDN1fZQoaAZHQJkK/YraufVoB03oA2gIR0C+kycw+MZQdX2UKGgGR0CY2L7tiQT3aAdN6ANoCEdAvpOndRBNVXV9lChoBkdAl4a+nl4keWgHTegDaAhHQL6Wi5Ec81Z1fZQoaAZHQJTcohhYvFpoB03oA2gIR0C+lvx8YyfudX2UKGgGR0CPrkJIDoyLaAdN6ANoCEdAvpls5NoJzHV9lChoBkdAjDNw5/9YOmgHTegDaAhHQL6Z9lImPYF1fZQoaAZHQJcoGiXY151oB03oA2gIR0C+nNUExIrfdX2UKGgGR0CZefz90ihWaAdN6ANoCEdAvp1J9H+ZPXV9lChoBkdAkXeaYZ2pymgHTegDaAhHQL6fpC2+fyx1fZQoaAZHQJaJa/CZWq9oB03oA2gIR0C+oCldonKGdX2UKGgGR0CXgPzeXRgJaAdN6ANoCEdAvqMAg0TDfnV9lChoBkdAmCnKBEroXGgHTegDaAhHQL6jcJoTPB11fZQoaAZHQJlXqc4HX3BoB03oA2gIR0C+pcdXgccVdX2UKGgGR0CXwct7a7EpaAdN6ANoCEdAvqZN2X9it3V9lChoBkdAmdPtqxkd3mgHTegDaAhHQL6pHoZydWh1fZQoaAZHQJqScetCAtpoB03oA2gIR0C+qY4GD+R6dX2UKGgGR0CaLx3cHnloaAdN6ANoCEdAvqvji6xxDXV9lChoBkdAmiwbILgGbGgHTegDaAhHQL6sZi9Zid91fZQoaAZHQJmHTWf9P1toB03oA2gIR0C+r0dfPX05dX2UKGgGR0Ca8dcm0E5iaAdN6ANoCEdAvq+0wCbMHXV9lChoBkdAmvEZe/pMYmgHTegDaAhHQL6yFh99c8l1fZQoaAZHQJYwgORT0g9oB03oA2gIR0C+spyuZCv6dX2UKGgGR0CYB7L6k691aAdN6ANoCEdAvraEhwEQoXV9lChoBkdAmN85OWSlnGgHTegDaAhHQL63MYQrc0t1fZQoaAZHQJQfkQZn+Q5oB03oA2gIR0C+urghje9BdX2UKGgGR0CZ3ZOFQEZBaAdN6ANoCEdAvrs8YVIqb3V9lChoBkdAnCoUnkT6BWgHTegDaAhHQL6+E1ZkkKN1fZQoaAZHQJuQJ8Aq/dtoB03oA2gIR0C+voF1jiGWdX2UKGgGR0CbgLVYZEUkaAdN6ANoCEdAvsDf+zdDY3V9lChoBkdAmg3Fy/9Hc2gHTegDaAhHQL7BZiWE9Md1fZQoaAZHQJrXJzfaYeFoB03oA2gIR0C+xETG5tm+dX2UKGgGR0CbqyNVinYQaAdN6ANoCEdAvsS3v5P/JnV9lChoBkdAmvcBo24usmgHTegDaAhHQL7HGfWcz691fZQoaAZHQJzjAgmqo61oB03oA2gIR0C+x5mSZBszdX2UKGgGR0CalWmYjSogaAdN6ANoCEdAvspr2nKnvXV9lChoBkdAmkBiOBDohmgHTegDaAhHQL7K2jqv/zd1fZQoaAZHQJmlJ+z+m3xoB03oA2gIR0C+zUBN21UmdX2UKGgGR0CbIZkGA09AaAdN6ANoCEdAvs2+peeFtnV9lChoBkdAnAyuoHcDbWgHTegDaAhHQL7Qm9JjDsN1fZQoaAZHQJmrpVea8YhoB03oA2gIR0C+0RBISUTtdX2UKGgGR0CZyU0AtFrmaAdN6ANoCEdAvtN1FiKBNHV9lChoBkdAmogBM8HObGgHTegDaAhHQL7T9ZEDyOJ1fZQoaAZHQJqTQxk/bCdoB03oA2gIR0C+1uiAQQMAdX2UKGgGR0CaNM8JUo8ZaAdN6ANoCEdAvtdWVD8cdnV9lChoBkdAmG3htP557mgHTegDaAhHQL7Zs1Oj7AN1fZQoaAZHQJoxomMOwxFoB03oA2gIR0C+2jPOhTOxdX2UKGgGR0CcDv0ulGgBaAdN6ANoCEdAvt0WqS5iE3V9lChoBkdAnHiJR0lqrWgHTegDaAhHQL7diT8HfMx1fZQoaAZHQJm4TPC2tuFoB03oA2gIR0C+3+vp2U0OdX2UKGgGR0CaUvfzz3AVaAdN6ANoCEdAvuBt6QeV9nV9lChoBkdAmaDD1f3N92gHTegDaAhHQL7jVMDfWMF1fZQoaAZHQJYU64hEBsBoB03oA2gIR0C+48efRNRFdX2UKGgGR0CXKpUL2HtXaAdN6ANoCEdAvuYxfPX05HV9lChoBkdAlSH6GpMpPWgHTegDaAhHQL7msi5d4V11fZQoaAZHQJfRzs6aLGdoB03oA2gIR0C+6YzzI3irdX2UKGgGR0CW1tMX7+DOaAdN6ANoCEdAvuoCNBF/hHV9lChoBkdAmlfVKPGQ0WgHTegDaAhHQL7sZOs1baB1fZQoaAZHQJUAaUliSaFoB03oA2gIR0C+7O1Fpfx+dX2UKGgGR0CcqOw84gieaAdN6ANoCEdAvu/HUWl/IHV9lChoBkdAnFmwvUSZjWgHTegDaAhHQL7wPJLuhK11fZQoaAZHQJu+ILKFIupoB03oA2gIR0C+8pxC6YmcdX2UKGgGR0CbWnHLA57xaAdN6ANoCEdAvvMfZuhsZnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d722c7209e6778c4d3315d109ed0be38221016d400bb9c4c8611dd2a80fd61
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:641a6bcd9d5a47050ed4c9458937a21e14c130a90c43559babdee2ce1da30507
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb1c161e0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb1c161e160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb1c161e1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb1c161e280>", "_build": "<function ActorCriticPolicy._build at 0x7fb1c161e310>", "forward": "<function ActorCriticPolicy.forward at 0x7fb1c161e3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb1c161e430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb1c161e4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb1c161e550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb1c161e5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb1c161e670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb1c161e700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb1c1620060>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674046700476333476, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJp54D86qR4/4fQsPshfDUAYrQhAtof2PlzngD+GOYe/wrtOPzJFPb6R2Ds/MZ6sv3gP9z8XdP4/EKuWvj40lj89oEk/AazIP/3TqD75JrO/b9GSv7b4pD1e6tU/FQsEP8prjL9KSQ0/1FOlPnt6Iz+mCAdAPweWPyLeL78poKE/+9XgP4dyWb4dYOM/Z2yyv6A8LL8a99M9UnY4vvxQ7r+28/U/XqIRvnYygr8/p7a+VBagvzDbWj+JtLc+LzD5vo8SlL+qsic+xANdP9tIST/Ka4y/H+3nv9RTpT57eiM/2V2nPKGRCj+93Hw+xmtmv0ODAj73ymk+TWs5P3rJlTyqKqO/IM+1PxGIWT90onE+GVgfvwnP0L81k6s+ogspPNRYVzzEbqA/QznxPlia/bqFl8c/GCFZQAoDJ79tFlo/9VppPx/t57/UU6U+PXHIv+HDhz+qgFa/9aMxPwWkPT+tGJ0/XSxTwBHohj/Jpma+4jWHv1ZkbsCa0NW93lDFPzURlD+hudC/oJj1vYKBG798hOw+peJzPYpqkT4Or0Y/QogIv31aij8zMJG+9LKcwMprjL8f7ee/1FOlPj1xyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACjtBS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANydiPQAAAADZk9+/AAAAAEA/T70AAAAAVSzrPwAAAACS5fU9AAAAAPOc7z8AAAAAD97cPQAAAADqae2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0n6uNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKzlq70AAAAASLzfvwAAAADqfQ8+AAAAADbp8z8AAAAA5DDQPQAAAABdH/I/AAAAAAAQwj0AAAAABCvxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEb6srUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDRjJg9AAAAAO8HAMAAAAAAa107PQAAAADXI9k/AAAAAAB6xLwAAAAATm7dPwAAAAAcgD48AAAAAMq2978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwIao2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/+LUvQAAAAA/w/a/AAAAAC8N1jwAAAAA9toAQAAAAAAakQM+AAAAAA0Z3z8AAAAAR0DpPAAAAAAe6eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUfGojv/iqMAWyUTegDjAF0lEdAvli0Z5zHTHV9lChoBkdAlkodM495hWgHTegDaAhHQL5ZKD28IzF1fZQoaAZHQJV7HdN34bloB03oA2gIR0C+W4DYEnstdX2UKGgGR0CS3cZ8rqdIaAdN6ANoCEdAvlwCqLjxTnV9lChoBkdAlZYnn+yZ8mgHTegDaAhHQL5e8oA4n4R1fZQoaAZHQJfNeqjrRjVoB03oA2gIR0C+X2DJU5uJdX2UKGgGR0CYw3ZEDyOJaAdN6ANoCEdAvmHCP/7zkXV9lChoBkdAk5G5BC2MKmgHTegDaAhHQL5iQ5jYqXp1fZQoaAZHQJioRT1kDp1oB03oA2gIR0C+ZSD9sJpndX2UKGgGR0CYILfAbhm5aAdN6ANoCEdAvmWQ12q1gHV9lChoBkdAmS6a2OQyRGgHTegDaAhHQL5n5Km8/Ux1fZQoaAZHQJZHLXGwRoRoB03oA2gIR0C+aGYChew+dX2UKGgGR0CYcik7wKBvaAdN6ANoCEdAvms+jFhod3V9lChoBkdAlpwwyEcsDmgHTegDaAhHQL5rqx7zCk51fZQoaAZHQJgLWXmeUY9oB03oA2gIR0C+bgZ2ll9SdX2UKGgGR0CV3fQ53kgfaAdN6ANoCEdAvm6Ln9vS+nV9lChoBkdAmAxJ79hqkGgHTegDaAhHQL5xXkJ8fFJ1fZQoaAZHQJj+qXE61b9oB03oA2gIR0C+cc/x2B8QdX2UKGgGR0CWXkLidat+aAdN6ANoCEdAvnQ5CzC1qnV9lChoBkdAlAT5lBhQWWgHTegDaAhHQL50tYeDFqB1fZQoaAZHQJaoID+zdDZoB03oA2gIR0C+d5RfShJzdX2UKGgGR0CVt41XeWOZaAdN6ANoCEdAvngAtmL9/HV9lChoBkdAmK623jMmnmgHTegDaAhHQL56WCvX9R91fZQoaAZHQJdU97mdRSBoB03oA2gIR0C+etb26ClKdX2UKGgGR0CYTBPmxMWXaAdN6ANoCEdAvn29C9h7V3V9lChoBkdAl+fXnlnyu2gHTegDaAhHQL5+Li/fwZx1fZQoaAZHQJkkuIAOrhloB03oA2gIR0C+gJj/IbOvdX2UKGgGR0CYRIYraufVaAdN6ANoCEdAvoEb/7zkIXV9lChoBkdAlyP9Iwudw2gHTegDaAhHQL6D+hHbypd1fZQoaAZHQJfktPP9kz5oB03oA2gIR0C+hGhu4wyqdX2UKGgGR0CXBsdVNpM6aAdN6ANoCEdAvobPA57w8XV9lChoBkdAmYqDI3irDWgHTegDaAhHQL6HU2gWac91fZQoaAZHQJqEz/zasZJoB03oA2gIR0C+ii5RXOnmdX2UKGgGR0CZG6XQdCE6aAdN6ANoCEdAvoqaJwbVBnV9lChoBkdAmwf5c9nscGgHTegDaAhHQL6M+kPMB6t1fZQoaAZHQJlvk6QvHtFoB03oA2gIR0C+jXjujRD1dX2UKGgGR0CZPYuNgjQiaAdN6ANoCEdAvpBWIj4YanV9lChoBkdAlz1tkjHGTGgHTegDaAhHQL6Qzv8ZUDN1fZQoaAZHQJkK/YraufVoB03oA2gIR0C+kycw+MZQdX2UKGgGR0CY2L7tiQT3aAdN6ANoCEdAvpOndRBNVXV9lChoBkdAl4a+nl4keWgHTegDaAhHQL6Wi5Ec81Z1fZQoaAZHQJTcohhYvFpoB03oA2gIR0C+lvx8YyfudX2UKGgGR0CPrkJIDoyLaAdN6ANoCEdAvpls5NoJzHV9lChoBkdAjDNw5/9YOmgHTegDaAhHQL6Z9lImPYF1fZQoaAZHQJcoGiXY151oB03oA2gIR0C+nNUExIrfdX2UKGgGR0CZefz90ihWaAdN6ANoCEdAvp1J9H+ZPXV9lChoBkdAkXeaYZ2pymgHTegDaAhHQL6fpC2+fyx1fZQoaAZHQJaJa/CZWq9oB03oA2gIR0C+oCldonKGdX2UKGgGR0CXgPzeXRgJaAdN6ANoCEdAvqMAg0TDfnV9lChoBkdAmCnKBEroXGgHTegDaAhHQL6jcJoTPB11fZQoaAZHQJlXqc4HX3BoB03oA2gIR0C+pcdXgccVdX2UKGgGR0CXwct7a7EpaAdN6ANoCEdAvqZN2X9it3V9lChoBkdAmdPtqxkd3mgHTegDaAhHQL6pHoZydWh1fZQoaAZHQJqScetCAtpoB03oA2gIR0C+qY4GD+R6dX2UKGgGR0CaLx3cHnloaAdN6ANoCEdAvqvji6xxDXV9lChoBkdAmiwbILgGbGgHTegDaAhHQL6sZi9Zid91fZQoaAZHQJmHTWf9P1toB03oA2gIR0C+r0dfPX05dX2UKGgGR0Ca8dcm0E5iaAdN6ANoCEdAvq+0wCbMHXV9lChoBkdAmvEZe/pMYmgHTegDaAhHQL6yFh99c8l1fZQoaAZHQJYwgORT0g9oB03oA2gIR0C+spyuZCv6dX2UKGgGR0CYB7L6k691aAdN6ANoCEdAvraEhwEQoXV9lChoBkdAmN85OWSlnGgHTegDaAhHQL63MYQrc0t1fZQoaAZHQJQfkQZn+Q5oB03oA2gIR0C+urghje9BdX2UKGgGR0CZ3ZOFQEZBaAdN6ANoCEdAvrs8YVIqb3V9lChoBkdAnCoUnkT6BWgHTegDaAhHQL6+E1ZkkKN1fZQoaAZHQJuQJ8Aq/dtoB03oA2gIR0C+voF1jiGWdX2UKGgGR0CbgLVYZEUkaAdN6ANoCEdAvsDf+zdDY3V9lChoBkdAmg3Fy/9Hc2gHTegDaAhHQL7BZiWE9Md1fZQoaAZHQJrXJzfaYeFoB03oA2gIR0C+xETG5tm+dX2UKGgGR0CbqyNVinYQaAdN6ANoCEdAvsS3v5P/JnV9lChoBkdAmvcBo24usmgHTegDaAhHQL7HGfWcz691fZQoaAZHQJzjAgmqo61oB03oA2gIR0C+x5mSZBszdX2UKGgGR0CalWmYjSogaAdN6ANoCEdAvspr2nKnvXV9lChoBkdAmkBiOBDohmgHTegDaAhHQL7K2jqv/zd1fZQoaAZHQJmlJ+z+m3xoB03oA2gIR0C+zUBN21UmdX2UKGgGR0CbIZkGA09AaAdN6ANoCEdAvs2+peeFtnV9lChoBkdAnAyuoHcDbWgHTegDaAhHQL7Qm9JjDsN1fZQoaAZHQJmrpVea8YhoB03oA2gIR0C+0RBISUTtdX2UKGgGR0CZyU0AtFrmaAdN6ANoCEdAvtN1FiKBNHV9lChoBkdAmogBM8HObGgHTegDaAhHQL7T9ZEDyOJ1fZQoaAZHQJqTQxk/bCdoB03oA2gIR0C+1uiAQQMAdX2UKGgGR0CaNM8JUo8ZaAdN6ANoCEdAvtdWVD8cdnV9lChoBkdAmG3htP557mgHTegDaAhHQL7Zs1Oj7AN1fZQoaAZHQJoxomMOwxFoB03oA2gIR0C+2jPOhTOxdX2UKGgGR0CcDv0ulGgBaAdN6ANoCEdAvt0WqS5iE3V9lChoBkdAnHiJR0lqrWgHTegDaAhHQL7diT8HfMx1fZQoaAZHQJm4TPC2tuFoB03oA2gIR0C+3+vp2U0OdX2UKGgGR0CaUvfzz3AVaAdN6ANoCEdAvuBt6QeV9nV9lChoBkdAmaDD1f3N92gHTegDaAhHQL7jVMDfWMF1fZQoaAZHQJYU64hEBsBoB03oA2gIR0C+48efRNRFdX2UKGgGR0CXKpUL2HtXaAdN6ANoCEdAvuYxfPX05HV9lChoBkdAlSH6GpMpPWgHTegDaAhHQL7msi5d4V11fZQoaAZHQJfRzs6aLGdoB03oA2gIR0C+6YzzI3irdX2UKGgGR0CW1tMX7+DOaAdN6ANoCEdAvuoCNBF/hHV9lChoBkdAmlfVKPGQ0WgHTegDaAhHQL7sZOs1baB1fZQoaAZHQJUAaUliSaFoB03oA2gIR0C+7O1Fpfx+dX2UKGgGR0CcqOw84gieaAdN6ANoCEdAvu/HUWl/IHV9lChoBkdAnFmwvUSZjWgHTegDaAhHQL7wPJLuhK11fZQoaAZHQJu+ILKFIupoB03oA2gIR0C+8pxC6YmcdX2UKGgGR0CbWnHLA57xaAdN6ANoCEdAvvMfZuhsZnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86bf1128b7f9d3a9910c5bbcad6ab531264bef340dccb20112674337b0b2706c
3
+ size 1200703
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1835.7160189314977, "std_reward": 163.21397678417122, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T14:03:29.400907"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:467ce1786981c538287cf700c0cdef1b6a677e3c4a96be5a0ff6eee70cda6a48
3
+ size 2521